
1 TECHNICAL

WHITEPAPER

ISO/IEC TS 17961 C SECURE CODING RULES
TECHNICAL SPECIFICATION CATEGORIES

MAPPED TO CODESONAR® 7.3

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

http://www.grammatech.com/

2 TECHNICAL WHITEPAPER

ISO/IEC TS 17961 C SECURE CODING RULES TECHNICAL SPECIFICATION CATEGORIES MAPPED TO CODESONAR® 7.3

INTRODUCTION

ISO/IEC TS 17961 specifies rules for secure coding in the C programming language.

For more information on ISO/IEC TS 17961:

https://www.iso.org/standard/61134.html

The remainder of this document comprises two tables:

• A table showing the close mapping between CodeSonar warning classes and the
ISO/IEC TS 17961 categories.

• A table showing the broad mapping between CodeSonar warning classes and the
ISO/IEC TS 17961 categories. The broad mapping for a CodeSonar warning class includes
the close mapping for the class, plus any other checks that are related to the class in a
meaningful way, but not eligible for the close mapping.

https://www.iso.org/standard/61134.html

3 TECHNICAL WHITEPAPER

ISO/IEC TS 17961 C SECURE CODING RULES TECHNICAL SPECIFICATION CATEGORIES MAPPED TO CODESONAR® 7.3

ISO/IEC TS 17961 CLOSE MAPPING (CODESONAR V7.3)

The following table contains CodeSonar warning classes that are closely mapped to ISO/IEC

TS 17961 categories.

Rule Rule Name Supported

TS17961:5.1-ptrcomp 5.1. Accessing an object through a pointer to an incompatible type Yes

TS17961:5.2-accfree 5.2. Accessing freed memory Yes

TS17961:5.3-accsig 5.3. Accessing shared objects in signal handlers Yes

TS17961:5.4-boolasgn 5.4. No assignment in conditional expressions Yes

TS17961:5.5-asyncsig
5.5. Calling functions in the C Standard Library other than abort, _Exit, and signal from
within a signal handler

Yes

TS17961:5.6-argcomp 5.6. Calling functions with incorrect arguments Yes

TS17961:5.7-sigcall 5.7. Calling signal from interruptible signal handlers Yes

TS17961:5.8-syscall 5.8. Calling system Yes

TS17961:5.9-padcomp 5.9. Comparison of padding data No

TS17961:5.10-intptrconv 5.10. Converting a pointer to integer or integer to pointer Yes

TS17961:5.11-alignconv 5.11. Converting pointer values to more strictly aligned pointer types No

TS17961:5.12-filecpy 5.12. Copying a FILE object Yes

TS17961:5.13-funcdecl 5.13. Declaring the same function or object in incompatible ways Yes

TS17961:5.14-nullref 5.14. Dereferencing an out-of-domain pointer Yes

TS17961:5.15-addrescape 5.15. Escaping of the address of an automatic object Yes

TS17961:5.16-signconv 5.16. Conversion of signed characters to wider integer types before a check for EOF Yes

TS17961:5.17-swtchdflt 5.17. Use of an implied default in a switch statement Yes

TS17961:5.18-fileclose 5.18. Failing to close files or free dynamic memory when they are no longer needed Yes

TS17961:5.19-liberr 5.19. Failing to detect and handle standard library errors Yes

TS17961:5.20-libptr 5.20. Forming invalid pointers by library function No

TS17961:5.21-invptr 5.21. Forming or using out-of-bounds pointers or array subscripts Yes

TS17961:5.22-dblfree 5.22. Freeing memory multiple times Yes

TS17961:5.23-usrfmt 5.23. Including tainted or out-of-domain input in a format string Yes

TS17961:5.24-inverrno 5.24. Incorrectly setting and using errno Yes

TS17961:5.25-diverr 5.25. Integer division errors Yes

TS17961:5.26-ioileave 5.26. Interleaving stream inputs and outputs without a flush or positioning call No

TS17961:5.27-strmod 5.27. Modifying string literals Yes

TS17961:5.28-libmod 5.28. Modifying the string returned by getenv, localeconv, setlocale, and strerror Yes

TS17961:5.29-intoflow 5.29. Overflowing signed integers Yes

TS17961:5.30-nonnullstr 5.30. Passing a non-null-terminated string to a library function Yes

TS17961:5.31-chrsgnext
5.31. Passing arguments to character-handling functions that are not representable as

unsigned char
Yes

TS17961:5.32-restrict
5.32. Passing pointers into the same object as arguments to different restrict-qualified
parameters

Yes

TS17961:5.33-xfree 5.33. Reallocating or freeing memory that was not dynamically allocated Yes

TS17961:5.34-uninitref 5.34. Referencing uninitialized memory Yes

TS17961:5.35-ptrobj 5.35. Subtracting or comparing two pointers that do not refer to the same array Yes

TS17961:5.36-taintstrcpy 5.36. Tainted strings are passed to a string copying function Yes

TS17961:5.37-sizeofptr 5.37. Taking the size of a pointer to determine the size of the pointed-to type Yes

TS17961:5.38-taintnoproto 5.38. Using a tainted value as an argument to an unprototyped function pointer Yes

TS17961:5.39-taintformatio 5.39. Using a tainted value to write to an object using a formatted input or output function Yes

4 TECHNICAL WHITEPAPER

ISO/IEC TS 17961 C SECURE CODING RULES TECHNICAL SPECIFICATION CATEGORIES MAPPED TO CODESONAR® 7.3

TS17961:5.40-xfilepos 5.40. Using a value for fsetpos other than a value returned from fgetpos No

TS17961:5.41-libuse 5.41. Using an object overwritten by getenv, localeconv, setlocale, and strerror No

TS17961:5.42-chreof 5.42. Using character values that are indistinguishable from EOF No

TS17961:5.43-resident 5.43. Using identifiers that are reserved for the implementation No

TS17961:5.44-invfmtstr 5.44. Using invalid format strings Yes

TS17961:5.45-taintsink
5.45. Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted
sink

Yes

5 TECHNICAL WHITEPAPER

ISO/IEC TS 17961 C SECURE CODING RULES TECHNICAL SPECIFICATION CATEGORIES MAPPED TO CODESONAR® 7.3

ISO/IEC TS 17961 BROAD MAPPING (CODESONAR V7.3)

The following table contains CodeSonar warning classes that are broadly mapped to ISO/IEC

TS 17961 categories.

Rule Rule Name Supported

TS17961:5.1-ptrcomp 5.1. Accessing an object through a pointer to an incompatible type Yes

TS17961:5.2-accfree 5.2. Accessing freed memory Yes

TS17961:5.3-accsig 5.3. Accessing shared objects in signal handlers Yes

TS17961:5.4-boolasgn 5.4. No assignment in conditional expressions Yes

TS17961:5.5-asyncsig
5.5. Calling functions in the C Standard Library other than abort, _Exit, and signal from within a
signal handler

Yes

TS17961:5.6-argcomp 5.6. Calling functions with incorrect arguments Yes

TS17961:5.7-sigcall 5.7. Calling signal from interruptible signal handlers Yes

TS17961:5.8-syscall 5.8. Calling system Yes

TS17961:5.9-padcomp 5.9. Comparison of padding data Yes

TS17961:5.10-intptrconv 5.10. Converting a pointer to integer or integer to pointer Yes

TS17961:5.11-alignconv 5.11. Converting pointer values to more strictly aligned pointer types No

TS17961:5.12-filecpy 5.12. Copying a FILE object Yes

TS17961:5.13-funcdecl 5.13. Declaring the same function or object in incompatible ways Yes

TS17961:5.14-nullref 5.14. Dereferencing an out-of-domain pointer Yes

TS17961:5.15-addrescape 5.15. Escaping of the address of an automatic object Yes

TS17961:5.16-signconv 5.16. Conversion of signed characters to wider integer types before a check for EOF Yes

TS17961:5.17-swtchdflt 5.17. Use of an implied default in a switch statement Yes

TS17961:5.18-fileclose 5.18. Failing to close files or free dynamic memory when they are no longer needed Yes

TS17961:5.19-liberr 5.19. Failing to detect and handle standard library errors Yes

TS17961:5.20-libptr 5.20. Forming invalid pointers by library function Yes

TS17961:5.21-invptr 5.21. Forming or using out-of-bounds pointers or array subscripts Yes

TS17961:5.22-dblfree 5.22. Freeing memory multiple times Yes

TS17961:5.23-usrfmt 5.23. Including tainted or out-of-domain input in a format string Yes

TS17961:5.24-inverrno 5.24. Incorrectly setting and using errno Yes

TS17961:5.25-diverr 5.25. Integer division errors Yes

TS17961:5.26-ioileave 5.26. Interleaving stream inputs and outputs without a flush or positioning call Yes

TS17961:5.27-strmod 5.27. Modifying string literals Yes

TS17961:5.28-libmod 5.28. Modifying the string returned by getenv, localeconv, setlocale, and strerror Yes

TS17961:5.29-intoflow 5.29. Overflowing signed integers Yes

TS17961:5.30-nonnullstr 5.30. Passing a non-null-terminated string to a library function Yes

TS17961:5.31-chrsgnext 5.31. Passing arguments to character-handling functions that are not representable as unsigned char Yes

TS17961:5.32-restrict 5.32. Passing pointers into the same object as arguments to different restrict-qualified parameters Yes

TS17961:5.33-xfree 5.33. Reallocating or freeing memory that was not dynamically allocated Yes

TS17961:5.34-uninitref 5.34. Referencing uninitialized memory Yes

TS17961:5.35-ptrobj 5.35. Subtracting or comparing two pointers that do not refer to the same array Yes

TS17961:5.36-taintstrcpy 5.36. Tainted strings are passed to a string copying function Yes

TS17961:5.37-sizeofptr 5.37. Taking the size of a pointer to determine the size of the pointed-to type Yes

TS17961:5.38-taintnoproto 5.38. Using a tainted value as an argument to an unprototyped function pointer Yes

TS17961:5.39-taintformatio 5.39. Using a tainted value to write to an object using a formatted input or output function Yes

TS17961:5.40-xfilepos 5.40. Using a value for fsetpos other than a value returned from fgetpos No

TS17961:5.41-libuse 5.41. Using an object overwritten by getenv, localeconv, setlocale, and strerror No

6 TECHNICAL WHITEPAPER

ISO/IEC TS 17961 C SECURE CODING RULES TECHNICAL SPECIFICATION CATEGORIES MAPPED TO CODESONAR® 7.3

TS17961:5.42-chreof 5.42. Using character values that are indistinguishable from EOF No

TS17961:5.43-resident 5.43. Using identifiers that are reserved for the implementation No

TS17961:5.44-invfmtstr 5.44. Using invalid format strings Yes

TS17961:5.45-taintsink 5.45. Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted sink Yes

GrammaTech is a leading global provider of application testing (AST) solutions used by the

world’s most security conscious organizations to detect, measure, analyze and resolve

vulnerabilities for software they develop or use. The company is also a trusted cybersecurity

and artificial intelligence research partner for the nation’s civil, defense, and intelligence

agencies.

CodeSonar and CodeSentry are registered trademarks of GrammaTech, Inc.

© GrammaTech, Inc. All rights reserved.

