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INTRODUCTION 

ISO/IEC TS 17961 specifies rules for secure coding in the C programming language. 
 

For more information on ISO/IEC TS 17961: 

https://www.iso.org/standard/61134.html 
 
The remainder of this document comprises two tables: 
 
• A table showing the close mapping between CodeSonar warning classes and the 
ISO/IEC TS 17961 categories. 
 
• A table showing the broad mapping between CodeSonar warning classes and the 
ISO/IEC TS 17961 categories. The broad mapping for a CodeSonar warning class includes 
the close mapping for the class, plus any other checks that are related to the class in a 
meaningful way, but not eligible for the close mapping. 

  

https://www.iso.org/standard/61134.html
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ISO/IEC TS 17961 CLOSE MAPPING (CODESONAR V7.3) 

 
The following table contains CodeSonar warning classes that are closely mapped to ISO/IEC 

TS 17961 categories. 

 

Rule Rule Name Supported 

TS17961:5.1-ptrcomp 5.1. Accessing an object through a pointer to an incompatible type Yes 

TS17961:5.2-accfree 5.2. Accessing freed memory Yes 

TS17961:5.3-accsig 5.3. Accessing shared objects in signal handlers Yes 

TS17961:5.4-boolasgn 5.4. No assignment in conditional expressions Yes 

TS17961:5.5-asyncsig 
5.5. Calling functions in the C Standard Library other than abort, _Exit, and signal from 
within a signal handler 

Yes 

TS17961:5.6-argcomp 5.6. Calling functions with incorrect arguments Yes 

TS17961:5.7-sigcall 5.7. Calling signal from interruptible signal handlers Yes 

TS17961:5.8-syscall 5.8. Calling system Yes 

TS17961:5.9-padcomp 5.9. Comparison of padding data No 

TS17961:5.10-intptrconv 5.10. Converting a pointer to integer or integer to pointer Yes 

TS17961:5.11-alignconv 5.11. Converting pointer values to more strictly aligned pointer types No 

TS17961:5.12-filecpy 5.12. Copying a FILE object Yes 

TS17961:5.13-funcdecl 5.13. Declaring the same function or object in incompatible ways Yes 

TS17961:5.14-nullref 5.14. Dereferencing an out-of-domain pointer Yes 

TS17961:5.15-addrescape 5.15. Escaping of the address of an automatic object Yes 

TS17961:5.16-signconv 5.16. Conversion of signed characters to wider integer types before a check for EOF Yes 

TS17961:5.17-swtchdflt 5.17. Use of an implied default in a switch statement Yes 

TS17961:5.18-fileclose 5.18. Failing to close files or free dynamic memory when they are no longer needed Yes 

TS17961:5.19-liberr 5.19. Failing to detect and handle standard library errors Yes 

TS17961:5.20-libptr 5.20. Forming invalid pointers by library function No 

TS17961:5.21-invptr 5.21. Forming or using out-of-bounds pointers or array subscripts Yes 

TS17961:5.22-dblfree 5.22. Freeing memory multiple times Yes 

TS17961:5.23-usrfmt 5.23. Including tainted or out-of-domain input in a format string Yes 

TS17961:5.24-inverrno 5.24. Incorrectly setting and using errno Yes 

TS17961:5.25-diverr 5.25. Integer division errors Yes 

TS17961:5.26-ioileave 5.26. Interleaving stream inputs and outputs without a flush or positioning call No 

TS17961:5.27-strmod 5.27. Modifying string literals Yes 

TS17961:5.28-libmod 5.28. Modifying the string returned by getenv, localeconv, setlocale, and strerror Yes 

TS17961:5.29-intoflow 5.29. Overflowing signed integers Yes 

TS17961:5.30-nonnullstr 5.30. Passing a non-null-terminated string to a library function Yes 

TS17961:5.31-chrsgnext 
5.31. Passing arguments to character-handling functions that are not representable as 

unsigned char 
Yes 

TS17961:5.32-restrict 
5.32. Passing pointers into the same object as arguments to different restrict-qualified 
parameters 

Yes 

TS17961:5.33-xfree 5.33. Reallocating or freeing memory that was not dynamically allocated Yes 

TS17961:5.34-uninitref 5.34. Referencing uninitialized memory Yes 

TS17961:5.35-ptrobj 5.35. Subtracting or comparing two pointers that do not refer to the same array Yes 

TS17961:5.36-taintstrcpy 5.36. Tainted strings are passed to a string copying function Yes 

TS17961:5.37-sizeofptr 5.37. Taking the size of a pointer to determine the size of the pointed-to type Yes 

TS17961:5.38-taintnoproto 5.38. Using a tainted value as an argument to an unprototyped function pointer Yes 

TS17961:5.39-taintformatio 5.39. Using a tainted value to write to an object using a formatted input or output function Yes 
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TS17961:5.40-xfilepos 5.40. Using a value for fsetpos other than a value returned from fgetpos No 

TS17961:5.41-libuse 5.41. Using an object overwritten by getenv, localeconv, setlocale, and strerror No 

TS17961:5.42-chreof 5.42. Using character values that are indistinguishable from EOF No 

TS17961:5.43-resident 5.43. Using identifiers that are reserved for the implementation No 

TS17961:5.44-invfmtstr 5.44. Using invalid format strings Yes 

TS17961:5.45-taintsink 
5.45. Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted 
sink 

Yes 
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ISO/IEC TS 17961 BROAD MAPPING (CODESONAR V7.3) 

 
The following table contains CodeSonar warning classes that are broadly mapped to ISO/IEC 

TS 17961 categories. 

 

Rule Rule Name Supported 

TS17961:5.1-ptrcomp 5.1. Accessing an object through a pointer to an incompatible type Yes 

TS17961:5.2-accfree 5.2. Accessing freed memory Yes 

TS17961:5.3-accsig 5.3. Accessing shared objects in signal handlers Yes 

TS17961:5.4-boolasgn 5.4. No assignment in conditional expressions Yes 

TS17961:5.5-asyncsig 
5.5. Calling functions in the C Standard Library other than abort, _Exit, and signal from within a 
signal handler 

Yes 

TS17961:5.6-argcomp 5.6. Calling functions with incorrect arguments Yes 

TS17961:5.7-sigcall 5.7. Calling signal from interruptible signal handlers Yes 

TS17961:5.8-syscall 5.8. Calling system Yes 

TS17961:5.9-padcomp 5.9. Comparison of padding data Yes 

TS17961:5.10-intptrconv 5.10. Converting a pointer to integer or integer to pointer Yes 

TS17961:5.11-alignconv 5.11. Converting pointer values to more strictly aligned pointer types No 

TS17961:5.12-filecpy 5.12. Copying a FILE object Yes 

TS17961:5.13-funcdecl 5.13. Declaring the same function or object in incompatible ways Yes 

TS17961:5.14-nullref 5.14. Dereferencing an out-of-domain pointer Yes 

TS17961:5.15-addrescape 5.15. Escaping of the address of an automatic object Yes 

TS17961:5.16-signconv 5.16. Conversion of signed characters to wider integer types before a check for EOF Yes 

TS17961:5.17-swtchdflt 5.17. Use of an implied default in a switch statement Yes 

TS17961:5.18-fileclose 5.18. Failing to close files or free dynamic memory when they are no longer needed Yes 

TS17961:5.19-liberr 5.19. Failing to detect and handle standard library errors Yes 

TS17961:5.20-libptr 5.20. Forming invalid pointers by library function Yes 

TS17961:5.21-invptr 5.21. Forming or using out-of-bounds pointers or array subscripts Yes 

TS17961:5.22-dblfree 5.22. Freeing memory multiple times Yes 

TS17961:5.23-usrfmt 5.23. Including tainted or out-of-domain input in a format string Yes 

TS17961:5.24-inverrno 5.24. Incorrectly setting and using errno Yes 

TS17961:5.25-diverr 5.25. Integer division errors Yes 

TS17961:5.26-ioileave 5.26. Interleaving stream inputs and outputs without a flush or positioning call Yes 

TS17961:5.27-strmod 5.27. Modifying string literals Yes 

TS17961:5.28-libmod 5.28. Modifying the string returned by getenv, localeconv, setlocale, and strerror Yes 

TS17961:5.29-intoflow 5.29. Overflowing signed integers Yes 

TS17961:5.30-nonnullstr 5.30. Passing a non-null-terminated string to a library function Yes 

TS17961:5.31-chrsgnext 5.31. Passing arguments to character-handling functions that are not representable as unsigned char Yes 

TS17961:5.32-restrict 5.32. Passing pointers into the same object as arguments to different restrict-qualified parameters Yes 

TS17961:5.33-xfree 5.33. Reallocating or freeing memory that was not dynamically allocated Yes 

TS17961:5.34-uninitref 5.34. Referencing uninitialized memory Yes 

TS17961:5.35-ptrobj 5.35. Subtracting or comparing two pointers that do not refer to the same array Yes 

TS17961:5.36-taintstrcpy 5.36. Tainted strings are passed to a string copying function Yes 

TS17961:5.37-sizeofptr 5.37. Taking the size of a pointer to determine the size of the pointed-to type Yes 

TS17961:5.38-taintnoproto 5.38. Using a tainted value as an argument to an unprototyped function pointer Yes 

TS17961:5.39-taintformatio 5.39. Using a tainted value to write to an object using a formatted input or output function Yes 

TS17961:5.40-xfilepos 5.40. Using a value for fsetpos other than a value returned from fgetpos No 

TS17961:5.41-libuse 5.41. Using an object overwritten by getenv, localeconv, setlocale, and strerror No 
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TS17961:5.42-chreof 5.42. Using character values that are indistinguishable from EOF No 

TS17961:5.43-resident 5.43. Using identifiers that are reserved for the implementation No 

TS17961:5.44-invfmtstr 5.44. Using invalid format strings Yes 

TS17961:5.45-taintsink 5.45. Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted sink Yes 
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