
1 TECHNICAL

WHITEPAPER

MISRA C++:2008 GUIDELINES FOR THE USE

OF THE C++ LANGUAGE IN CRITICAL

SYSTEMS CODESONAR® 7.3

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

http://www.grammatech.com/

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

2 TECHNICAL WHITEPAPER

MISRA C++:2008 GUIDELINES FOR THE USE OF THE C++ LANGUAGE IN CRITICAL SYSTEMS

The MISRA C++:2008 standard aims to foster safety, reliability, and portability of programs

written in ISO C for embedded systems. It is used in a wide range of industries, including

automotive, aerospace, medical devices, and industrial control.

CodeSonar 7.3 includes a large number of warning classes that support checking for the MISRA

C++:2008 guidelines. Every CodeSonar warning report includes the numbers of any MISRA

C++:2008 rules and directives that are closely mapped to the warning’s class. (The close

mapping for a warning class is the set of categories—including MISRA C++:2008 rule and

directive numbers—that most closely match the class, if any).

You can configure CodeSonar to enable and disable warning classes mapped to specific MISRA

C++:2008 rules and directives, or use build presets to enable all warning classes that are closely

mapped to any MISRA C++:2008 rules and directives. In addition, you can use the CodeSonar

search function to find warnings related to specific MISRA C++:2008 rules or directives, or to

any MISRA C++:2008 rule or directive.

For more information on MISRA C++:2008:

https://www.misra.org.uk/MISRACHome/tabid/128/Default.aspx

https://www.misra.org.uk/MISRACHome/tabid/128/Default.aspx

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

3 TECHNICAL WHITEPAPER

MISRA C++:2008 CLOSE MAPPING (CODESONAR V7.3)

The following table contains CodeSonar classes that are closely mapped to specific

MISRA C++:2008 rules and directives.

Rule Rule Name Category Supported

MisraC++2008:0-1-1 A project shall not contain unreachable code. Required Yes

MisraC++2008:0-1-2 A project shall not contain infeasible paths. Required Yes

MisraC++2008:0-1-3 A project shall not contain unused variables. Required Yes

MisraC++2008:0-1-4 A project shall not contain non-volatile POD variables having only one use. Required Yes

MisraC++2008:0-1-5 A project shall not contain unused type declarations. Required Yes

MisraC++2008:0-1-6
A project shall not contain instances of non-volatile variables being given values that are never
subsequently used.

Required Yes

MisraC++2008:0-1-7
The value returned by a function having a non-void return type that is not an overloaded operator
shall always be used.

Required Yes

MisraC++2008:0-1-8 All functions with void return type shall have external side effect(s). Required Yes

MisraC++2008:0-1-9 There shall be no dead code. Required Yes

MisraC++2008:0-1-10 Every defined function shall be called at least once. Required No

MisraC++2008:0-1-11 There shall be no unused parameters (named or unnamed) in non-virtual functions. Required Yes

MisraC++2008:0-1-12
There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual
function and all the functions that override it.

Required Yes

MisraC++2008:0-2-1 An object shall not be assigned to an overlapping object. Required Yes

MisraC++2008:0-3-1
Minimization of run-time failures shall be ensured by the use of at least one of:(a) static analysis
tools/techniques; (b) dynamic analysis tools/techniques; (c) explicit coding of checks to handle run-
time faults.

Document No

MisraC++2008:0-3-2 If a function generates error information, then that error information shall be tested. Required Yes

MisraC++2008:0-4-1 Use of scaled-integer or fixed-point arithmetic shall be documented. Document No

MisraC++2008:0-4-2 Use of floating-point arithmetic shall be documented. Document No

MisraC++2008:0-4-3 Floating-point implementations shall comply with a defined floating-point standard. Document No

MisraC++2008:1-0-1
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical
Corrigendum 1."

Required No

MisraC++2008:1-0-2 Multiple compilers shall only be used if they have a common, defined interface. Document No

MisraC++2008:1-0-3
The implementation of integer division in the chosen compiler shall be determined and
documented.

Document No

MisraC++2008:2-2-1 The character set and the corresponding encoding shall be documented. Document No

MisraC++2008:2-3-1 Trigraphs shall not be used. Required Yes

MisraC++2008:2-5-1 Digraphs should not be used. Advisory No

MisraC++2008:2-7-1 The character sequence /* shall not be used within a C-style comment. Required Yes

MisraC++2008:2-7-2 Sections of code shall not be "commented out" using C-style comments. Required Yes

MisraC++2008:2-7-3 Sections of code should not be "commented out" using C++ comments. Advisory Yes

MisraC++2008:2-10-1 Different identifiers shall be typographically unambiguous. Required Yes

MisraC++2008:2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope. Required Yes

MisraC++2008:2-10-3 A typedef name (including qualification, if any) shall be a unique identifier. Required Yes

MisraC++2008:2-10-4 A class, union or enum name (including qualification, if any) shall be a unique identifier. Required Yes

MisraC++2008:2-10-5
The identifier name of a non-member object or function with static storage duration should not be
reused.

Advisory Yes

MisraC++2008:2-10-6 If an identifier refers to a type, it shall not also refer to an object or a function in the same scope. Required Yes

MisraC++2008:2-13-1 Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used. Required No

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

4 TECHNICAL WHITEPAPER

MisraC++2008:2-13-2 Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used. Required Yes

MisraC++2008:2-13-3 A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type. Required Yes

MisraC++2008:2-13-4 Literal suffixes shall be upper case. Required Yes

MisraC++2008:2-13-5 Narrow and wide string literals shall not be concatenated. Required No

MisraC++2008:3-1-1
It shall be possible to include any header file in multiple translation units without violating the One
Definition Rule.

Required Yes

MisraC++2008:3-1-2 Functions shall not be declared at block scope. Required Yes

MisraC++2008:3-1-3
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Required Yes

MisraC++2008:3-2-1 All declarations of an object or function shall have compatible types. Required Yes

MisraC++2008:3-2-2 The One Definition Rule shall not be violated. Required Yes

MisraC++2008:3-2-3
A type, object or function that is used in multiple translation units shall be declared in one and only

one file.
Required Yes

MisraC++2008:3-2-4 An identifier with external linkage shall have exactly one definition. Required Yes

MisraC++2008:3-3-1 Objects or functions with external linkage shall be declared in a header file. Required No

MisraC++2008:3-3-2
If a function has internal linkage then all re-declarations shall include the static storage class
specifier.

Required No

MisraC++2008:3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility.

Required Yes

MisraC++2008:3-9-1
The types used for an object, a function return type, or a function parameter shall be token-for-
token identical in all declarations and re-declarations.

Required Yes

MisraC++2008:3-9-2 typedefs that indicate size and signedness should be used in place of the basic numerical types. Advisory Yes

MisraC++2008:3-9-3 The underlying bit representations of floating-point values shall not be used. Required Yes

MisraC++2008:4-5-1
Expressions with type bool shall not be used as operands to built-in operators other than the
assignment operator = , the logical operators && , || , ! , the equality operators == and != , the unary
& operator, and the conditional operator.

Required Yes

MisraC++2008:4-5-2
Expressions with type enum shall not be used as operands to built-in operators other than the
subscript operator [] , the assignment operator = , the equality operators == and != , the unary &
operator, and the relational operators < , <= , > , >= .

Required Yes

MisraC++2008:4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator = , the equality operators == and != , and the unary & operator.

Required Yes

MisraC++2008:4-10-1 NULL shall not be used as an integer value. Required Yes

MisraC++2008:4-10-2 Literal zero (0) shall not be used as the null-pointer-constant. Required Yes

MisraC++2008:5-0-1
The value of an expression shall be the same under any order of evaluation that the standard
permits.

Required Yes

MisraC++2008:5-0-2 Limited dependence should be placed on C++ operator precedence rules in expressions. Advisory Yes

MisraC++2008:5-0-3 A cvalue expression shall not be implicitly converted to a different underlying type. Required Yes

MisraC++2008:5-0-4 An implicit integral conversion shall not change the signedness of the underlying type. Required Yes

MisraC++2008:5-0-5 There shall be no implicit floating-integral conversions. Required Yes

MisraC++2008:5-0-6 An implicit integral or floating-point conversion shall not reduce the size of the underlying type. Required Yes

MisraC++2008:5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression. Required Yes

MisraC++2008:5-0-8
An explicit integral or floating-point conversion shall not increase the size of the underlying type of

a cvalue expression.
Required Yes

MisraC++2008:5-0-9
An explicit integral conversion shall not change the signedness of the underlying type of a cvalue
expression.

Required Yes

MisraC++2008:5-0-10
If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned
char or unsigned short, the result shall be immediately cast to the underlying type of the operand.

Required Yes

MisraC++2008:5-0-11 The plain char type shall only be used for the storage and use of character values. Required Yes

MisraC++2008:5-0-12 signed char and unsigned char type shall only be used for the storage and use of numeric values. Required Yes

MisraC++2008:5-0-13 The condition of an if-statement and the condition of an iteration-statement shall have type bool. Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

5 TECHNICAL WHITEPAPER

MisraC++2008:5-0-14 The first operand of a conditional-operator shall have type bool. Required Yes

MisraC++2008:5-0-15 Array indexing shall be the only form of pointer arithmetic. Required Yes

MisraC++2008:5-0-16
A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both
address elements of the same array.

Required Yes

MisraC++2008:5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of the same
array.

Required Yes

MisraC++2008:5-0-18
> , >= , < , <= shall not be applied to objects of pointer type, except where they point to the same

array.
Required Yes

MisraC++2008:5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection. Required Yes

MisraC++2008:5-0-20 Non-constant operands to a binary bitwise operator shall have the same underlying type. Required Yes

MisraC++2008:5-0-21 Bitwise operators shall only be applied to operands of unsigned underlying type. Required Yes

MisraC++2008:5-2-1 Each operand of a logical && or || shall be a postfix-expression. Required No

MisraC++2008:5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of
dynamic_cast.

Required Yes

MisraC++2008:5-2-3 Casts from a base class to a derived class should not be performed on polymorphic types. Advisory No

MisraC++2008:5-2-4
C-style casts (other than void casts) and functional notation casts (other than explicit constructor
calls) shall not be used.

Required Yes

MisraC++2008:5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or reference. Required Yes

MisraC++2008:5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a pointer to
function type.

Required Yes

MisraC++2008:5-2-7
An object with pointer type shall not be converted to an unrelated pointer type, either directly or
indirectly.

Required Yes

MisraC++2008:5-2-8
An object with integer type or pointer to void type shall not be converted to an object with pointer
type.

Required Yes

MisraC++2008:5-2-9 A cast should not convert a pointer type to an integral type. Advisory Yes

MisraC++2008:5-2-10
The increment (++) and decrement (--) operators should not be mixed with other operators in an

expression.
Advisory Yes

MisraC++2008:5-2-11 The comma operator, && operator and the || operator shall not be overloaded. Required Yes

MisraC++2008:5-2-12 An identifier with array type passed as a function argument shall not decay to a pointer. Required Yes

MisraC++2008:5-3-1 Each operand of the ! operator, the logical && or the logical || operators shall have type bool. Required Yes

MisraC++2008:5-3-2 The unary minus operator shall not be applied to an expression whose underlying type is unsigned. Required Yes

MisraC++2008:5-3-3 The unary & operator shall not be overloaded. Required Yes

MisraC++2008:5-3-4 Evaluation of the operand to the sizeof operator shall not contain side effects. Required Yes

MisraC++2008:5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the width in bits
of the underlying type of the left hand operand.

Required Yes

MisraC++2008:5-14-1 The right hand operand of a logical && or || operator shall not contain side effects. Required Yes

MisraC++2008:5-17-1
The semantic equivalence between a binary operator and its assignment operator form shall be
preserved.

Required No

MisraC++2008:5-18-1 The comma operator shall not be used. Required Yes

MisraC++2008:5-19-1 Evaluation of constant unsigned integer expressions should not lead to wrap-around. Advisory No

MisraC++2008:6-2-1 Assignment operators shall not be used in sub-expressions. Required Yes

MisraC++2008:6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or inequality. Required Yes

MisraC++2008:6-2-3
Before preprocessing, a null statement shall only occur on a line ny itself; it may be followed by a
comment, provided that the first character following the null statement is a white-space character.

Required No

MisraC++2008:6-3-1
The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

Required Yes

MisraC++2008:6-4-1
An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

Required Yes

MisraC++2008:6-4-2 All if ... else if constructs shall be terminated with an else clause. Required Yes

MisraC++2008:6-4-3 A switch statement shall be a well-formed switch statement. Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

6 TECHNICAL WHITEPAPER

MisraC++2008:6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement is the body
of a switch statement.

Required Yes

MisraC++2008:6-4-5 An unconditional throw or break statement shall terminate every non-empty switch-clause. Required Yes

MisraC++2008:6-4-6 The final clause of a switch statement shall be the default-clause. Required Yes

MisraC++2008:6-4-7 The condition of a switch statement shall not have bool type. Required Yes

MisraC++2008:6-4-8 Every switch statement shall have at least one case-clause. Required Yes

MisraC++2008:6-5-1 A for loop shall contain a single loop-counter which shall not have floating type. Required Yes

MisraC++2008:6-5-2
If loop-counter is not modified by -- or ++ , then, within condition, the loop-counter shall only be
used as an operand to <= , < , > or >= .

Required No

MisraC++2008:6-5-3 The loop-counter shall not be modified within condition or statement. Required Yes

MisraC++2008:6-5-4
The loop-counter shall be modified by one of -- , ++ , -=n , or +=n; where n remains constant for
the duration of the loop.

Required Yes

MisraC++2008:6-5-5
A loop-control-variable other than the loop-counter shall not be modified within condition or
expression.

Required Yes

MisraC++2008:6-5-6
A loop-control-variable other than the loop-counter which is modified in statement shall have type

bool.
Required No

MisraC++2008:6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a block
enclosing the goto statement.

Required Yes

MisraC++2008:6-6-2 The goto statement shall jump to a label declared later in the same function body. Required Yes

MisraC++2008:6-6-3 The continue statement shall only be used within a well-formed for loop. Required Yes

MisraC++2008:6-6-4
For any iteration statement there shall be no more than one break or goto statement used for loop
termination.

Required Yes

MisraC++2008:6-6-5 A function shall have a single point of exit at the end of the function. Required Yes

MisraC++2008:7-1-1 A variable which is not modified shall be const qualified. Required Yes

MisraC++2008:7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or reference to
const if the corresponding object is not modified.

Required Yes

MisraC++2008:7-2-1
An expression with enum underlying type shall only have values corresponding to the enumerators
of the enumeration.

Required Yes

MisraC++2008:7-3-1 The global namespace shall only contain main, namespace declarations and extern "C" declarations. Required Yes

MisraC++2008:7-3-2 The identifier main shall not be used for a function other than the global function main. Required No

MisraC++2008:7-3-3 There shall be no unnamed namespaces in header files. Required Yes

MisraC++2008:7-3-4 using-directives shall not be used. Required Yes

MisraC++2008:7-3-5
Multiple declarations for an identifier in the same namespace shall not straddle a using-declaration
for that identifier.

Required Yes

MisraC++2008:7-3-6
using-directives and using-declarations (excluding class scope or function scope using-declarations)
shall not be used in header files.

Required Yes

MisraC++2008:7-4-1 All usage of assembler shall be documented. Document No

MisraC++2008:7-4-2 Assembler instructions shall only be introduced using the asm declaration. Required Yes

MisraC++2008:7-4-3 Assembly language shall be encapsulated and isolated. Required Yes

MisraC++2008:7-5-1
A function shall not return a reference or a pointer to an automatic variable (including parameters),

defined within the function.
Required Yes

MisraC++2008:7-5-2
The address of an object with automatic storage shall not be assigned to another object that may

persist afer the first object has ceased to exist.
Required Yes

MisraC++2008:7-5-3
A function shall not return a reference or a pointer to a parameter that is passed by reference or
const reference.

Required No

MisraC++2008:7-5-4 Functions should not call themselves, either directly or indirectly. Advisory Yes

MisraC++2008:8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or
member-declarator respectively.

Required No

MisraC++2008:8-3-1
Parameters in an overriding virtual function shall either use the same default arguments as the
function they override, or else shall not specify any default arguments.

Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

7 TECHNICAL WHITEPAPER

MisraC++2008:8-4-1 Functions shall not be defined using the ellipsis notation. Required Yes

MisraC++2008:8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be identical to those in
the declaration.

Required Yes

MisraC++2008:8-4-3
All exit paths from a function with non-void return type shall have an explicit return statement with
an expression.

Required Yes

MisraC++2008:8-4-4 A function identifier shall either be used to call the function or it shall be preceded by &. Required Yes

MisraC++2008:8-5-1 All variables shall have a defined value before they are used. Required Yes

MisraC++2008:8-5-2
Braces shall be used to indicate and match the structure in the non-zero initialization of arrays and
structures.

Required Yes

MisraC++2008:8-5-3
In an enumerator list, the = construct shall not be used to explicitly initialize members other than
the first, unless all items are explicitly initialized.

Required Yes

MisraC++2008:9-3-1 const member functions shall not return non-const pointers or references to class-data. Required No

MisraC++2008:9-3-2 Member functions shall not return non-const handles to class-data. Required No

MisraC++2008:9-3-3
If a member function can be made static then it shall be made static, otherwise if it can be made
const then it shall be made const.

Required Yes

MisraC++2008:9-5-1 Unions shall not be used. Required Yes

MisraC++2008:9-6-1
When the absolute partitioning of bits representing a bit-field is required, then the behaviour and
packing of bit-fields shall be documented.

Document No

MisraC++2008:9-6-2 Bit-fields shall be either bool type or an explicitly unsigned or signed integral type. Required Yes

MisraC++2008:9-6-3 Bit-fields shall not have enum type. Required Yes

MisraC++2008:9-6-4 Named bit-fields with signed integer type shall have a length of more than one bit. Required Yes

MisraC++2008:10-1-1 Classes should not be derived from virtual bases. Advisory Yes

MisraC++2008:10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy. Required Yes

MisraC++2008:10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy. Required Yes

MisraC++2008:10-2-1 All accessible entity names within a multiple inheritance hierarchy should be unique. Advisory No

MisraC++2008:10-3-1
There shall be no more than one definition of each virtual function on each path through the
inheritance hierarchy.

Required No

MisraC++2008:10-3-2 Each overriding virtual function shall be declared with the virtual keyword. Required No

MisraC++2008:10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure

virtual.
Required No

MisraC++2008:11-0-1 Member data in non-POD class types shall be private. Required No

MisraC++2008:12-1-1 An object's dynamic type shall not be used from the body of its constructor or destructor. Required Yes

MisraC++2008:12-1-2
All constructors of a class should explicitly call a constructor for all of its immediate base classes
and all virtual base classes.

Advisory No

MisraC++2008:12-1-3
All constructors that are callable with a single argument of fundamental type shall be declared
explicit.

Required No

MisraC++2008:12-8-1
A copy constructor shall only initialize its base classes and the non- static members of the class of
which it is a member.

Required Yes

MisraC++2008:12-8-2 The copy assignment operator shall be declared protected or private in an abstract class. Required Yes

MisraC++2008:14-5-1
A non-member generic function shall only be declared in a namespace that is not an associated

namespace.
Required No

MisraC++2008:14-5-2
A copy constructor shall be declared when there is a template constructor with a single parameter

that is a generic parameter.
Required No

MisraC++2008:14-5-3
A copy assignment operator shall be declared when there is a template assignment operator with a
parameter that is a generic parameter.

Required No

MisraC++2008:14-6-1
In a class template with a dependent base, any name that may be found in that dependent base shall
be referred to using a qualified-id or this->

Required No

MisraC++2008:14-6-2
The function chosen by overload resolution shall resolve to a function declared previously in the
translation unit.

Required No

MisraC++2008:14-7-1
All class templates, function templates, class template member functions and class template static
members shall be instantiated at least once.

Required No

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

8 TECHNICAL WHITEPAPER

MisraC++2008:14-7-2
For any given template specialization, an explicit instantiation of the template with the template-
arguments used in the specialization shall not render the program ill-formed.

Required No

MisraC++2008:14-7-3
All partial and explicit specializations for a template shall be declared in the same file as the
declaration of their primary template.

Required No

MisraC++2008:14-8-1 Overloaded function templates shall not be explicitly specialized. Required No

MisraC++2008:14-8-2
The viable function set for a function call should either contain no function specializations, or only
contain function specializations.

Advisory No

MisraC++2008:15-0-1 Exceptions shall only be used for error handling. Document No

MisraC++2008:15-0-2 An exception object should not have pointer type. Advisory No

MisraC++2008:15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch statement. Required No

MisraC++2008:15-1-1 The assignment-expression of a throw statement shall not itself cause an exception to be thrown. Required No

MisraC++2008:15-1-2 NULL shall not be thrown explicitly. Required No

MisraC++2008:15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch handler. Required No

MisraC++2008:15-3-1 Exceptions shall be raised only after start-up and before termination of the program. Required No

MisraC++2008:15-3-2 There should be at least one exception handler to catch all otherwise unhandled exceptions. Advisory No

MisraC++2008:15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor shall not
reference non-static members from this class or its bases.

Required No

MisraC++2008:15-3-4
Each exception explicitly thrown in the code shall have a handler of a compatible type in all call
paths that could lead to that point.

Required No

MisraC++2008:15-3-5 A class type exception shall always be caught by reference. Required Yes

MisraC++2008:15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-block for a
derived class and some or all of its bases, the handlers shall be ordered most-derived to base class.

Required Yes

MisraC++2008:15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-block, any

ellipsis (catch-all) handler shall occur last.
Required Yes

MisraC++2008:15-4-1
If a function is declared with an exception-specification, then all declarations of the same function
(in other translation units) shall be declared with the same set of type-ids.

Required No

MisraC++2008:15-5-1 A class destructor shall not exit with an exception. Required No

MisraC++2008:15-5-2
Where a function's declaration includes an exception-specification, the function shall only be
capable of throwing exceptions of the indicated type(s).

Required No

MisraC++2008:15-5-3 The terminate() function shall not be called implicitly. Required No

MisraC++2008:16-0-1 #include directives in a file shall only be preceded by preprocessor directives or comments. Required Yes

MisraC++2008:16-0-2 Macros shall only be #define'd or #undef'd in the global namespace. Required No

MisraC++2008:16-0-3 #undef shall not be used. Required Yes

MisraC++2008:16-0-4 Function-like macros shall not be defined. Required Yes

MisraC++2008:16-0-5 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives. Required Yes

MisraC++2008:16-0-6
In the definition of a function-like macro, each instance of a parameter shall be enclosed in
parentheses, unless it is used as the operand of # or ## .

Required Yes

MisraC++2008:16-0-7
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as
operands to the defined operator.

Required Yes

MisraC++2008:16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed by a

preprocessing token.
Required Yes

MisraC++2008:16-1-1 The defined preprocessor operator shall only be used in one of the two standard forms. Required No

MisraC++2008:16-1-2
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef
directive to which they are related.

Required Yes

MisraC++2008:16-2-1 The pre-processor shall only be used for file inclusion and include guards. Required No

MisraC++2008:16-2-2 C++ macros shall only be used for include guards, type qualifiers, or storage class specifiers. Required No

MisraC++2008:16-2-3 Include guards shall be provided. Required No

MisraC++2008:16-2-4 The ', ", /* or // characters shall not occur in a header file name. Required Yes

MisraC++2008:16-2-5 The \ character should not occur in a header file name. Advisory Yes

MisraC++2008:16-2-6 The #include directive shall be followed by either a or "filename" sequence. Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

9 TECHNICAL WHITEPAPER

MisraC++2008:16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro definition. Required No

MisraC++2008:16-3-2 The # and ## operators should not be used. Advisory Yes

MisraC++2008:16-6-1 All uses of the #pragma directive shall be documented. Document No

MisraC++2008:17-0-1
Reserved identifiers, macros and functions in the standard library shall not be defined, redefined or

undefined.
Required Yes

MisraC++2008:17-0-2 The names of standard library macros and objects shall not be reused. Required Yes

MisraC++2008:17-0-3 The names of standard library functions shall not be overridden. Required Yes

MisraC++2008:17-0-4 All library code shall conform to MISRA C++. Document No

MisraC++2008:17-0-5 The setjmp macro and the longjmp function shall not be used. Required Yes

MisraC++2008:18-0-1 The C library shall not be used. Required Yes

MisraC++2008:18-0-2 The library functions atof, atoi and atol from library shall not be used. Required Yes

MisraC++2008:18-0-3 The library functions abort, exit, getenv and system from library shall not be used. Required Yes

MisraC++2008:18-0-4 The time handling functions of library shall not be used. Required Yes

MisraC++2008:18-0-5 The unbounded functions of library shall not be used. Required Yes

MisraC++2008:18-2-1 The macro offsetof shall not be used. Required Yes

MisraC++2008:18-4-1 Dynamic heap memory allocation shall not be used. Required Yes

MisraC++2008:18-7-1 The signal handling facilities of shall not be used. Required Yes

MisraC++2008:19-3-1 The error indicator errno shall not be used. Required No

MisraC++2008:27-0-1 The stream input/output library shall not be used. Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

10 TECHNICAL WHITEPAPER

MISRA C++:2008 BROAD MAPPING (CODESONAR V7.3)

The following table contains CodeSonar warning classes that are broadly mapped to MISRA

C++:2008 categories.

Rule Rule Name Category Supported

MisraC++2008:0-1-1 A project shall not contain unreachable code. Required Yes

MisraC++2008:0-1-2 A project shall not contain infeasible paths. Required Yes

MisraC++2008:0-1-3 A project shall not contain unused variables. Required Yes

MisraC++2008:0-1-4 A project shall not contain non-volatile POD variables having only one use. Required Yes

MisraC++2008:0-1-5 A project shall not contain unused type declarations. Required Yes

MisraC++2008:0-1-6
A project shall not contain instances of non-volatile variables being given values that are never
subsequently used.

Required Yes

MisraC++2008:0-1-7
The value returned by a function having a non-void return type that is not an overloaded operator
shall always be used.

Required Yes

MisraC++2008:0-1-8 All functions with void return type shall have external side effect(s). Required Yes

MisraC++2008:0-1-9 There shall be no dead code. Required Yes

MisraC++2008:0-1-10 Every defined function shall be called at least once. Required Yes

MisraC++2008:0-1-11 There shall be no unused parameters (named or unnamed) in non-virtual functions. Required Yes

MisraC++2008:0-1-12
There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual
function and all the functions that override it.

Required Yes

MisraC++2008:0-2-1 An object shall not be assigned to an overlapping object. Required Yes

MisraC++2008:0-3-1
Minimization of run-time failures shall be ensured by the use of at least one of:(a) static analysis
tools/techniques; (b) dynamic analysis tools/techniques; (c) explicit coding of checks to handle run-
time faults.

Document No

MisraC++2008:0-3-2 If a function generates error information, then that error information shall be tested. Required Yes

MisraC++2008:0-4-1 Use of scaled-integer or fixed-point arithmetic shall be documented. Document No

MisraC++2008:0-4-2 Use of floating-point arithmetic shall be documented. Document No

MisraC++2008:0-4-3 Floating-point implementations shall comply with a defined floating-point standard. Document No

MisraC++2008:1-0-1
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical
Corrigendum 1."

Required No

MisraC++2008:1-0-2 Multiple compilers shall only be used if they have a common, defined interface. Document No

MisraC++2008:1-0-3 The implementation of integer division in the chosen compiler shall be determined and documented. Document No

MisraC++2008:2-2-1 The character set and the corresponding encoding shall be documented. Document No

MisraC++2008:2-3-1 Trigraphs shall not be used. Required Yes

MisraC++2008:2-5-1 Digraphs should not be used. Advisory No

MisraC++2008:2-7-1 The character sequence /* shall not be used within a C-style comment. Required Yes

MisraC++2008:2-7-2 Sections of code shall not be "commented out" using C-style comments. Required Yes

MisraC++2008:2-7-3 Sections of code should not be "commented out" using C++ comments. Advisory Yes

MisraC++2008:2-10-1 Different identifiers shall be typographically unambiguous. Required Yes

MisraC++2008:2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope. Required Yes

MisraC++2008:2-10-3 A typedef name (including qualification, if any) shall be a unique identifier. Required Yes

MisraC++2008:2-10-4 A class, union or enum name (including qualification, if any) shall be a unique identifier. Required Yes

MisraC++2008:2-10-5
The identifier name of a non-member object or function with static storage duration should not be
reused.

Advisory Yes

MisraC++2008:2-10-6 If an identifier refers to a type, it shall not also refer to an object or a function in the same scope. Required Yes

MisraC++2008:2-13-1 Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used. Required No

MisraC++2008:2-13-2 Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used. Required Yes

MisraC++2008:2-13-3 A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type. Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

11 TECHNICAL WHITEPAPER

MisraC++2008:2-13-4 Literal suffixes shall be upper case. Required Yes

MisraC++2008:2-13-5 Narrow and wide string literals shall not be concatenated. Required No

MisraC++2008:3-1-1
It shall be possible to include any header file in multiple translation units without violating the One
Definition Rule.

Required Yes

MisraC++2008:3-1-2 Functions shall not be declared at block scope. Required Yes

MisraC++2008:3-1-3
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Required Yes

MisraC++2008:3-2-1 All declarations of an object or function shall have compatible types. Required Yes

MisraC++2008:3-2-2 The One Definition Rule shall not be violated. Required Yes

MisraC++2008:3-2-3
A type, object or function that is used in multiple translation units shall be declared in one and only
one file.

Required Yes

MisraC++2008:3-2-4 An identifier with external linkage shall have exactly one definition. Required Yes

MisraC++2008:3-3-1 Objects or functions with external linkage shall be declared in a header file. Required No

MisraC++2008:3-3-2
If a function has internal linkage then all re-declarations shall include the static storage class
specifier.

Required No

MisraC++2008:3-4-1 An identifier declared to be an object or type shall be defined in a block that minimizes its visibility. Required Yes

MisraC++2008:3-9-1
The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations.

Required Yes

MisraC++2008:3-9-2 typedefs that indicate size and signedness should be used in place of the basic numerical types. Advisory Yes

MisraC++2008:3-9-3 The underlying bit representations of floating-point values shall not be used. Required Yes

MisraC++2008:4-5-1
Expressions with type bool shall not be used as operands to built-in operators other than the
assignment operator = , the logical operators && , || , ! , the equality operators == and != , the unary
& operator, and the conditional operator.

Required Yes

MisraC++2008:4-5-2
Expressions with type enum shall not be used as operands to built-in operators other than the
subscript operator [] , the assignment operator = , the equality operators == and != , the unary &
operator, and the relational operators < , <= , > , >= .

Required Yes

MisraC++2008:4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator = , the equality operators == and != , and the unary & operator.

Required Yes

MisraC++2008:4-10-1 NULL shall not be used as an integer value. Required Yes

MisraC++2008:4-10-2 Literal zero (0) shall not be used as the null-pointer-constant. Required Yes

MisraC++2008:5-0-1 The value of an expression shall be the same under any order of evaluation that the standard permits. Required Yes

MisraC++2008:5-0-2 Limited dependence should be placed on C++ operator precedence rules in expressions. Advisory Yes

MisraC++2008:5-0-3 A cvalue expression shall not be implicitly converted to a different underlying type. Required Yes

MisraC++2008:5-0-4 An implicit integral conversion shall not change the signedness of the underlying type. Required Yes

MisraC++2008:5-0-5 There shall be no implicit floating-integral conversions. Required Yes

MisraC++2008:5-0-6 An implicit integral or floating-point conversion shall not reduce the size of the underlying type. Required Yes

MisraC++2008:5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression. Required Yes

MisraC++2008:5-0-8
An explicit integral or floating-point conversion shall not increase the size of the underlying type of
a cvalue expression.

Required Yes

MisraC++2008:5-0-9
An explicit integral conversion shall not change the signedness of the underlying type of a cvalue

expression.
Required Yes

MisraC++2008:5-0-10
If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned char

or unsigned short, the result shall be immediately cast to the underlying type of the operand.
Required Yes

MisraC++2008:5-0-11 The plain char type shall only be used for the storage and use of character values. Required Yes

MisraC++2008:5-0-12 signed char and unsigned char type shall only be used for the storage and use of numeric values. Required Yes

MisraC++2008:5-0-13 The condition of an if-statement and the condition of an iteration-statement shall have type bool. Required Yes

MisraC++2008:5-0-14 The first operand of a conditional-operator shall have type bool. Required Yes

MisraC++2008:5-0-15 Array indexing shall be the only form of pointer arithmetic. Required Yes

MisraC++2008:5-0-16
A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both
address elements of the same array.

Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

12 TECHNICAL WHITEPAPER

MisraC++2008:5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of the same
array.

Required Yes

MisraC++2008:5-0-18
> , >= , < , <= shall not be applied to objects of pointer type, except where they point to the same
array.

Required Yes

MisraC++2008:5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection. Required Yes

MisraC++2008:5-0-20 Non-constant operands to a binary bitwise operator shall have the same underlying type. Required Yes

MisraC++2008:5-0-21 Bitwise operators shall only be applied to operands of unsigned underlying type. Required Yes

MisraC++2008:5-2-1 Each operand of a logical && or || shall be a postfix-expression. Required No

MisraC++2008:5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of
dynamic_cast.

Required Yes

MisraC++2008:5-2-3 Casts from a base class to a derived class should not be performed on polymorphic types. Advisory No

MisraC++2008:5-2-4
C-style casts (other than void casts) and functional notation casts (other than explicit constructor
calls) shall not be used.

Required Yes

MisraC++2008:5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or reference. Required Yes

MisraC++2008:5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a pointer to

function type.
Required Yes

MisraC++2008:5-2-7
An object with pointer type shall not be converted to an unrelated pointer type, either directly or
indirectly.

Required Yes

MisraC++2008:5-2-8
An object with integer type or pointer to void type shall not be converted to an object with pointer
type.

Required Yes

MisraC++2008:5-2-9 A cast should not convert a pointer type to an integral type. Advisory Yes

MisraC++2008:5-2-10
The increment (++) and decrement (--) operators should not be mixed with other operators in an
expression.

Advisory Yes

MisraC++2008:5-2-11 The comma operator, && operator and the || operator shall not be overloaded. Required Yes

MisraC++2008:5-2-12 An identifier with array type passed as a function argument shall not decay to a pointer. Required Yes

MisraC++2008:5-3-1 Each operand of the ! operator, the logical && or the logical || operators shall have type bool. Required Yes

MisraC++2008:5-3-2 The unary minus operator shall not be applied to an expression whose underlying type is unsigned. Required Yes

MisraC++2008:5-3-3 The unary & operator shall not be overloaded. Required Yes

MisraC++2008:5-3-4 Evaluation of the operand to the sizeof operator shall not contain side effects. Required Yes

MisraC++2008:5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the width in bits
of the underlying type of the left hand operand.

Required Yes

MisraC++2008:5-14-1 The right hand operand of a logical && or || operator shall not contain side effects. Required Yes

MisraC++2008:5-17-1
The semantic equivalence between a binary operator and its assignment operator form shall be
preserved.

Required No

MisraC++2008:5-18-1 The comma operator shall not be used. Required Yes

MisraC++2008:5-19-1 Evaluation of constant unsigned integer expressions should not lead to wrap-around. Advisory No

MisraC++2008:6-2-1 Assignment operators shall not be used in sub-expressions. Required Yes

MisraC++2008:6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or inequality. Required Yes

MisraC++2008:6-2-3
Before preprocessing, a null statement shall only occur on a line ny itself; it may be followed by a
comment, provided that the first character following the null statement is a white-space character.

Required No

MisraC++2008:6-3-1
The statement forming the body of a switch, while, do ... while or for statement shall be a compound
statement.

Required Yes

MisraC++2008:6-4-1
An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

Required Yes

MisraC++2008:6-4-2 All if ... else if constructs shall be terminated with an else clause. Required Yes

MisraC++2008:6-4-3 A switch statement shall be a well-formed switch statement. Required Yes

MisraC++2008:6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement is the body
of a switch statement.

Required Yes

MisraC++2008:6-4-5 An unconditional throw or break statement shall terminate every non-empty switch-clause. Required Yes

MisraC++2008:6-4-6 The final clause of a switch statement shall be the default-clause. Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

13 TECHNICAL WHITEPAPER

MisraC++2008:6-4-7 The condition of a switch statement shall not have bool type. Required Yes

MisraC++2008:6-4-8 Every switch statement shall have at least one case-clause. Required Yes

MisraC++2008:6-5-1 A for loop shall contain a single loop-counter which shall not have floating type. Required Yes

MisraC++2008:6-5-2
If loop-counter is not modified by -- or ++ , then, within condition, the loop-counter shall only be

used as an operand to <= , < , > or >= .
Required No

MisraC++2008:6-5-3 The loop-counter shall not be modified within condition or statement. Required Yes

MisraC++2008:6-5-4
The loop-counter shall be modified by one of -- , ++ , -=n , or +=n; where n remains constant for the
duration of the loop.

Required Yes

MisraC++2008:6-5-5
A loop-control-variable other than the loop-counter shall not be modified within condition or
expression.

Required Yes

MisraC++2008:6-5-6
A loop-control-variable other than the loop-counter which is modified in statement shall have type
bool.

Required No

MisraC++2008:6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a block enclosing
the goto statement.

Required Yes

MisraC++2008:6-6-2 The goto statement shall jump to a label declared later in the same function body. Required Yes

MisraC++2008:6-6-3 The continue statement shall only be used within a well-formed for loop. Required Yes

MisraC++2008:6-6-4
For any iteration statement there shall be no more than one break or goto statement used for loop
termination.

Required Yes

MisraC++2008:6-6-5 A function shall have a single point of exit at the end of the function. Required Yes

MisraC++2008:7-1-1 A variable which is not modified shall be const qualified. Required Yes

MisraC++2008:7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or reference to
const if the corresponding object is not modified.

Required Yes

MisraC++2008:7-2-1
An expression with enum underlying type shall only have values corresponding to the enumerators
of the enumeration.

Required Yes

MisraC++2008:7-3-1 The global namespace shall only contain main, namespace declarations and extern "C" declarations. Required Yes

MisraC++2008:7-3-2 The identifier main shall not be used for a function other than the global function main. Required No

MisraC++2008:7-3-3 There shall be no unnamed namespaces in header files. Required Yes

MisraC++2008:7-3-4 using-directives shall not be used. Required Yes

MisraC++2008:7-3-5
Multiple declarations for an identifier in the same namespace shall not straddle a using-declaration
for that identifier.

Required Yes

MisraC++2008:7-3-6
using-directives and using-declarations (excluding class scope or function scope using-declarations)
shall not be used in header files.

Required Yes

MisraC++2008:7-4-1 All usage of assembler shall be documented. Document No

MisraC++2008:7-4-2 Assembler instructions shall only be introduced using the asm declaration. Required Yes

MisraC++2008:7-4-3 Assembly language shall be encapsulated and isolated. Required Yes

MisraC++2008:7-5-1
A function shall not return a reference or a pointer to an automatic variable (including parameters),
defined within the function.

Required Yes

MisraC++2008:7-5-2
The address of an object with automatic storage shall not be assigned to another object that may
persist afer the first object has ceased to exist.

Required Yes

MisraC++2008:7-5-3
A function shall not return a reference or a pointer to a parameter that is passed by reference or const
reference.

Required No

MisraC++2008:7-5-4 Functions should not call themselves, either directly or indirectly. Advisory Yes

MisraC++2008:8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-
declarator respectively.

Required No

MisraC++2008:8-3-1
Parameters in an overriding virtual function shall either use the same default arguments as the

function they override, or else shall not specify any default arguments.
Required Yes

MisraC++2008:8-4-1 Functions shall not be defined using the ellipsis notation. Required Yes

MisraC++2008:8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be identical to those in
the declaration.

Required Yes

MisraC++2008:8-4-3
All exit paths from a function with non-void return type shall have an explicit return statement with
an expression.

Required Yes

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

14 TECHNICAL WHITEPAPER

MisraC++2008:8-4-4 A function identifier shall either be used to call the function or it shall be preceded by &. Required Yes

MisraC++2008:8-5-1 All variables shall have a defined value before they are used. Required Yes

MisraC++2008:8-5-2
Braces shall be used to indicate and match the structure in the non-zero initialization of arrays and
structures.

Required Yes

MisraC++2008:8-5-3
In an enumerator list, the = construct shall not be used to explicitly initialize members other than the
first, unless all items are explicitly initialized.

Required Yes

MisraC++2008:9-3-1 const member functions shall not return non-const pointers or references to class-data. Required No

MisraC++2008:9-3-2 Member functions shall not return non-const handles to class-data. Required No

MisraC++2008:9-3-3
If a member function can be made static then it shall be made static, otherwise if it can be made
const then it shall be made const.

Required Yes

MisraC++2008:9-5-1 Unions shall not be used. Required Yes

MisraC++2008:9-6-1
When the absolute partitioning of bits representing a bit-field is required, then the behaviour and
packing of bit-fields shall be documented.

Document No

MisraC++2008:9-6-2 Bit-fields shall be either bool type or an explicitly unsigned or signed integral type. Required Yes

MisraC++2008:9-6-3 Bit-fields shall not have enum type. Required Yes

MisraC++2008:9-6-4 Named bit-fields with signed integer type shall have a length of more than one bit. Required Yes

MisraC++2008:10-1-1 Classes should not be derived from virtual bases. Advisory Yes

MisraC++2008:10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy. Required Yes

MisraC++2008:10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy. Required Yes

MisraC++2008:10-2-1 All accessible entity names within a multiple inheritance hierarchy should be unique. Advisory No

MisraC++2008:10-3-1
There shall be no more than one definition of each virtual function on each path through the
inheritance hierarchy.

Required No

MisraC++2008:10-3-2 Each overriding virtual function shall be declared with the virtual keyword. Required No

MisraC++2008:10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure
virtual.

Required No

MisraC++2008:11-0-1 Member data in non-POD class types shall be private. Required No

MisraC++2008:12-1-1 An object's dynamic type shall not be used from the body of its constructor or destructor. Required Yes

MisraC++2008:12-1-2
All constructors of a class should explicitly call a constructor for all of its immediate base classes
and all virtual base classes.

Advisory No

MisraC++2008:12-1-3
All constructors that are callable with a single argument of fundamental type shall be declared
explicit.

Required No

MisraC++2008:12-8-1
A copy constructor shall only initialize its base classes and the non- static members of the class of
which it is a member.

Required Yes

MisraC++2008:12-8-2 The copy assignment operator shall be declared protected or private in an abstract class. Required Yes

MisraC++2008:14-5-1
A non-member generic function shall only be declared in a namespace that is not an associated
namespace.

Required No

MisraC++2008:14-5-2
A copy constructor shall be declared when there is a template constructor with a single parameter
that is a generic parameter.

Required No

MisraC++2008:14-5-3
A copy assignment operator shall be declared when there is a template assignment operator with a
parameter that is a generic parameter.

Required No

MisraC++2008:14-6-1
In a class template with a dependent base, any name that may be found in that dependent base shall
be referred to using a qualified-id or this->

Required No

MisraC++2008:14-6-2
The function chosen by overload resolution shall resolve to a function declared previously in the
translation unit.

Required No

MisraC++2008:14-7-1
All class templates, function templates, class template member functions and class template static

members shall be instantiated at least once.
Required No

MisraC++2008:14-7-2
For any given template specialization, an explicit instantiation of the template with the template-
arguments used in the specialization shall not render the program ill-formed.

Required No

MisraC++2008:14-7-3
All partial and explicit specializations for a template shall be declared in the same file as the
declaration of their primary template.

Required No

MisraC++2008:14-8-1 Overloaded function templates shall not be explicitly specialized. Required No

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

15 TECHNICAL WHITEPAPER

MisraC++2008:14-8-2
The viable function set for a function call should either contain no function specializations, or only
contain function specializations.

Advisory No

MisraC++2008:15-0-1 Exceptions shall only be used for error handling. Document No

MisraC++2008:15-0-2 An exception object should not have pointer type. Advisory No

MisraC++2008:15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch statement. Required No

MisraC++2008:15-1-1 The assignment-expression of a throw statement shall not itself cause an exception to be thrown. Required No

MisraC++2008:15-1-2 NULL shall not be thrown explicitly. Required No

MisraC++2008:15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch handler. Required No

MisraC++2008:15-3-1 Exceptions shall be raised only after start-up and before termination of the program. Required No

MisraC++2008:15-3-2 There should be at least one exception handler to catch all otherwise unhandled exceptions. Advisory No

MisraC++2008:15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor shall not
reference non-static members from this class or its bases.

Required No

MisraC++2008:15-3-4
Each exception explicitly thrown in the code shall have a handler of a compatible type in all call
paths that could lead to that point.

Required No

MisraC++2008:15-3-5 A class type exception shall always be caught by reference. Required Yes

MisraC++2008:15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-block for a
derived class and some or all of its bases, the handlers shall be ordered most-derived to base class.

Required Yes

MisraC++2008:15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-block, any
ellipsis (catch-all) handler shall occur last.

Required Yes

MisraC++2008:15-4-1
If a function is declared with an exception-specification, then all declarations of the same function
(in other translation units) shall be declared with the same set of type-ids.

Required No

MisraC++2008:15-5-1 A class destructor shall not exit with an exception. Required No

MisraC++2008:15-5-2
Where a function's declaration includes an exception-specification, the function shall only be capable

of throwing exceptions of the indicated type(s).
Required No

MisraC++2008:15-5-3 The terminate() function shall not be called implicitly. Required No

MisraC++2008:16-0-1 #include directives in a file shall only be preceded by preprocessor directives or comments. Required Yes

MisraC++2008:16-0-2 Macros shall only be #define'd or #undef'd in the global namespace. Required No

MisraC++2008:16-0-3 #undef shall not be used. Required Yes

MisraC++2008:16-0-4 Function-like macros shall not be defined. Required Yes

MisraC++2008:16-0-5 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives. Required Yes

MisraC++2008:16-0-6
In the definition of a function-like macro, each instance of a parameter shall be enclosed in
parentheses, unless it is used as the operand of # or ## .

Required Yes

MisraC++2008:16-0-7
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as
operands to the defined operator.

Required Yes

MisraC++2008:16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed by a
preprocessing token.

Required Yes

MisraC++2008:16-1-1 The defined preprocessor operator shall only be used in one of the two standard forms. Required No

MisraC++2008:16-1-2
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef
directive to which they are related.

Required Yes

MisraC++2008:16-2-1 The pre-processor shall only be used for file inclusion and include guards. Required No

MisraC++2008:16-2-2 C++ macros shall only be used for include guards, type qualifiers, or storage class specifiers. Required No

MisraC++2008:16-2-3 Include guards shall be provided. Required No

MisraC++2008:16-2-4 The ', ", /* or // characters shall not occur in a header file name. Required Yes

MisraC++2008:16-2-5 The \ character should not occur in a header file name. Advisory Yes

MisraC++2008:16-2-6 The #include directive shall be followed by either a or "filename" sequence. Required Yes

MisraC++2008:16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro definition. Required No

MisraC++2008:16-3-2 The # and ## operators should not be used. Advisory Yes

MisraC++2008:16-6-1 All uses of the #pragma directive shall be documented. Document No

CODESONAR 7.3 | MISRA C++:2008 GUIDELINES FOR THE USE OF THE C/C++ LANGUAGE IN CRITICAL SYSTEMS

16 TECHNICAL WHITEPAPER

MisraC++2008:17-0-1
Reserved identifiers, macros and functions in the standard library shall not be defined, redefined or
undefined.

Required Yes

MisraC++2008:17-0-2 The names of standard library macros and objects shall not be reused. Required Yes

MisraC++2008:17-0-3 The names of standard library functions shall not be overridden. Required Yes

MisraC++2008:17-0-4 All library code shall conform to MISRA C++. Document No

MisraC++2008:17-0-5 The setjmp macro and the longjmp function shall not be used. Required Yes

MisraC++2008:18-0-1 The C library shall not be used. Required Yes

MisraC++2008:18-0-2 The library functions atof, atoi and atol from library shall not be used. Required Yes

MisraC++2008:18-0-3 The library functions abort, exit, getenv and system from library shall not be used. Required Yes

MisraC++2008:18-0-4 The time handling functions of library shall not be used. Required Yes

MisraC++2008:18-0-5 The unbounded functions of library shall not be used. Required Yes

MisraC++2008:18-2-1 The macro offsetof shall not be used. Required Yes

MisraC++2008:18-4-1 Dynamic heap memory allocation shall not be used. Required Yes

MisraC++2008:18-7-1 The signal handling facilities of shall not be used. Required Yes

MisraC++2008:19-3-1 The error indicator errno shall not be used. Required No

MisraC++2008:27-0-1 The stream input/output library shall not be used. Required Yes

GrammaTech is a leading global provider of application testing (AST) solutions used by the

world’s most security conscious organizations to detect, measure, analyze and resolve

vulnerabilities for software they develop or use. The company is also a trusted cybersecurity

and artificial intelligence research partner for the nation’s civil, defense, and intelligence

agencies.

CodeSonar and CodeSentry are registered trademarks of GrammaTech, Inc.

© GrammaTech, Inc. All rights reserved.

