
1 TECHNICAL
WHITEPAPER

SEI CERT-C++ RULES AND
RECOMMENDATIONS
MAPPED TO CODESONAR® 7.3 WARNING CLASSES

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

http://www.grammatech.com/

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 7.3 WARNING CLASSES

2 TECHNICAL WHITEPAPER

INTRODUCTION

The SEI CERT C++ Coding Standard (CERT-C++) provides rules and recommendations for

secure coding in the C++ programming language. The goal of these rules and recommendations

is to develop safe, reliable, and secure systems, for example by eliminating undefined behaviors

that can lead to undefined program behaviors and exploitable vulnerabilities. Conformance to

the coding rules defined in this standard is necessary (but not sufficient) to ensure the safety,

reliability, and security of software systems developed in the C++ programming language.

CodeSonar 7.3 includes a large number of warning classes that support checking for the CERT-

C++ rules and recommendations. Every CodeSonar warning report includes the identifiers of

any CERT-C++ rules and recommendations that are closely mapped to the warning’s class. (The

close mapping for a warning class is the set of categories—including CERT-C++ rules and

recommendations—that most closely match the class, if any).

You can configure CodeSonar to enable and disable warning classes mapped to specific CERT-

C++ rules and recommendations, or use build presets to enable all warning classes that are

closely mapped to any CERT-C++ rules and recommendations. In addition, you can use the

CodeSonar search function to find warnings related to specific CERT-C++ rules or

recommendations, or to any CERT-C++ rule or recommendation.

For more information on the SEI CERT C++ Coding Standard:

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=8804668

The remainder of this document comprises two tables:

• A table showing the close mapping between CodeSonar warning classes and the SEI

CERT-C++ Coding Standard.

• A table showing the broad mapping between CodeSonar warning classes and the SEI

CERT-C++ Coding Standard. The broad CERT-C++ mapping for a CodeSonar warning

class includes the close CERT-C++ mapping for the class, plus any other CERT-C++ rules

and recommendations that are related to the class in a meaningful way, but not eligible for

the close mapping.

GrammaTech is a leading global provider of application testing (AST) solutions used by the

world’s most security conscious organizations to detect, measure, analyze and resolve

vulnerabilities for software they develop or use. The company is also a trusted cybersecurity

and artificial intelligence research partner for the nation’s civil, defense, and intelligence

agencies.

CodeSonar and CodeSentry are registered trademarks of GrammaTech, Inc.

© GrammaTech, Inc. All rights reserved.

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 7.3 WARNING CLASSES

3 TECHNICAL WHITEPAPER

SEI CERT C++ CODING STANDARD CLOSE MAPPING (CODESONAR V7.3)

The following table contains CodeSonar warning classes that are closely mapped to CERT-C++ rules and

recommendations.

Rule Rule Name Category Supported

CERT-CPP:CON50-CPP Do not destroy a mutex while it is locked Rule Yes

CERT-CPP:CON51-CPP Ensure actively held locks are released on exceptional conditions Rule Yes

CERT-CPP:CON52-CPP Prevent data races when accessing bit-fields from multiple threads Rule Yes

CERT-CPP:CON53-CPP Avoid deadlock by locking in a predefined order Rule Yes

CERT-CPP:CON54-CPP Wrap functions that can spuriously wake up in a loop Rule Yes

CERT-CPP:CON55-CPP Preserve thread safety and liveness when using condition variables Rule Yes

CERT-CPP:CON56-CPP Do not speculatively lock a non-recursive mutex that is already owned by the calling thread Rule Yes

CERT-CPP:CTR50-CPP Guarantee that container indices and iterators are within the valid range Rule Yes

CERT-CPP:CTR51-CPP Use valid references, pointers, and iterators to reference elements of a container Rule Yes

CERT-CPP:CTR52-CPP Guarantee that library functions do not overflow Rule Yes

CERT-CPP:CTR53-CPP Use valid iterator ranges Rule Yes

CERT-CPP:CTR54-CPP Do not subtract iterators that do not refer to the same container Rule Yes

CERT-CPP:CTR55-CPP Do not use an additive operator on an iterator if the result would overflow Rule No

CERT-CPP:CTR56-CPP Do not use pointer arithmetic on polymorphic objects Rule Yes

CERT-CPP:CTR57-CPP Provide a valid ordering predicate Rule No

CERT-CPP:CTR58-CPP Predicate function objects should not be mutable Rule No

CERT-CPP:DCL50-CPP Do not define a C-style variadic function Rule Yes

CERT-CPP:DCL51-CPP Do not declare or define a reserved identifier Rule Yes

CERT-CPP:DCL52-CPP Never qualify a reference type with const or volatile Rule No

CERT-CPP:DCL53-CPP Do not write syntactically ambiguous declarations Rule Yes

CERT-CPP:DCL54-CPP Overload allocation and deallocation functions as a pair in the same scope Rule No

CERT-CPP:DCL55-CPP Avoid information leakage when passing a class object across a trust boundary Rule Yes

CERT-CPP:DCL56-CPP Avoid cycles during initialization of static objects Rule Yes

CERT-CPP:DCL57-CPP Do not let exceptions escape from destructors or deallocation functions Rule Yes

CERT-CPP:DCL58-CPP Do not modify the standard namespaces Rule Yes

CERT-CPP:DCL59-CPP Do not define an unnamed namespace in a header file Rule Yes

CERT-CPP:DCL60-CPP Obey the one-definition rule Rule Yes

CERT-CPP:ERR50-CPP Do not abruptly terminate the program Rule Yes

CERT-CPP:ERR51-CPP Handle all exceptions Rule Yes

CERT-CPP:ERR52-CPP Do not use setjmp() or longjmp() Rule Yes

CERT-CPP:ERR53-CPP
Do not reference base classes or class data members in a constructor or destructor function-try-
block handler

Rule No

CERT-CPP:ERR54-CPP Catch handlers should order their parameter types from most derived to least derived Rule Yes

CERT-CPP:ERR55-CPP Honor exception specifications Rule Yes

CERT-CPP:ERR56-CPP Guarantee exception safety Rule No

CERT-CPP:ERR57-CPP Do not leak resources when handling exceptions Rule Yes

CERT-CPP:ERR58-CPP Handle all exceptions thrown before main() begins executing Rule Yes

CERT-CPP:ERR59-CPP Do not throw an exception across execution boundaries Rule No

CERT-CPP:ERR60-CPP Exception objects must be nothrow copy constructible Rule No

CERT-CPP:ERR61-CPP Catch exceptions by lvalue reference Rule Yes

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 7.3 WARNING CLASSES

4 TECHNICAL WHITEPAPER

CERT-CPP:ERR62-CPP Detect errors when converting a string to a number Rule Yes

CERT-CPP:EXP50-CPP Do not depend on the order of evaluation for side effects Rule Yes

CERT-CPP:EXP51-CPP Do not delete an array through a pointer of the incorrect type Rule Yes

CERT-CPP:EXP52-CPP Do not rely on side effects in unevaluated operands Rule Yes

CERT-CPP:EXP53-CPP Do not read uninitialized memory Rule Yes

CERT-CPP:EXP54-CPP Do not access an object outside of its lifetime Rule Yes

CERT-CPP:EXP55-CPP Do not access a cv-qualified object through a cv-unqualified type Rule No

CERT-CPP:EXP56-CPP Do not call a function with a mismatched language linkage Rule No

CERT-CPP:EXP57-CPP Do not cast or delete pointers to incomplete classes Rule Yes

CERT-CPP:EXP58-CPP Pass an object of the correct type to va_start Rule Yes

CERT-CPP:EXP59-CPP Use offsetof() on valid types and members Rule Yes

CERT-CPP:EXP60-CPP Do not pass a nonstandard-layout type object across execution boundaries Rule No

CERT-CPP:EXP61-CPP A lambda object must not outlive any of its reference captured objects Rule No

CERT-CPP:EXP62-CPP
Do not access the bits of an object representation that are not part of the object's value
representation

Rule Yes

CERT-CPP:EXP63-CPP Do not rely on the value of a moved-from object Rule Yes

CERT-CPP:FIO50-CPP Do not alternately input and output from a file stream without an intervening positioning call Rule Yes

CERT-CPP:FIO51-CPP Close files when they are no longer needed Rule Yes

CERT-CPP:INT50-CPP Do not cast to an out-of-range enumeration value Rule Yes

CERT-CPP:MEM50-CPP Do not access freed memory Rule Yes

CERT-CPP:MEM51-CPP Properly deallocate dynamically allocated resources Rule Yes

CERT-CPP:MEM52-CPP Detect and handle memory allocation errors Rule No

CERT-CPP:MEM53-CPP Explicitly construct and destruct objects when manually managing object lifetime Rule No

CERT-CPP:MEM54-CPP Provide placement new with properly aligned pointers to sufficient storage capacity Rule Yes

CERT-CPP:MEM55-CPP Honor replacement dynamic storage management requirements Rule No

CERT-CPP:MEM56-CPP Do not store an already-owned pointer value in an unrelated smart pointer Rule No

CERT-CPP:MEM57-CPP Avoid using default operator new for over-aligned types Rule No

CERT-CPP:MSC50-CPP Do not use std::rand() for generating pseudorandom numbers Rule Yes

CERT-CPP:MSC51-CPP Ensure your random number generator is properly seeded Rule Yes

CERT-CPP:MSC52-CPP Value-returning functions must return a value from all exit paths Rule Yes

CERT-CPP:MSC53-CPP Do not return from a function declared [[noreturn]] Rule Yes

CERT-CPP:MSC54-CPP A signal handler must be a plain old function Rule No

CERT-CPP:OOP50-CPP Do not invoke virtual functions from constructors or destructors Rule Yes

CERT-CPP:OOP51-CPP Do not slice derived objects Rule Yes

CERT-CPP:OOP52-CPP Do not delete a polymorphic object without a virtual destructor Rule Yes

CERT-CPP:OOP53-CPP Write constructor member initializers in the canonical order Rule Yes

CERT-CPP:OOP54-CPP Gracefully handle self-copy assignment Rule Yes

CERT-CPP:OOP55-CPP Do not use pointer-to-member operators to access nonexistent members Rule Yes

CERT-CPP:OOP56-CPP Honor replacement handler requirements Rule No

CERT-CPP:OOP57-CPP Prefer special member functions and overloaded operators to C Standard Library functions Rule Yes

CERT-CPP:OOP58-CPP Copy operations must not mutate the source object Rule Yes

CERT-CPP:STR50-CPP Guarantee that storage for strings has sufficient space for character data and the null terminator Rule Yes

CERT-CPP:STR51-CPP Do not attempt to create a std::string from a null pointer Rule Yes

CERT-CPP:STR52-CPP Use valid references, pointers, and iterators to reference elements of a basic_string Rule Yes

CERT-CPP:STR53-CPP Range check element access Rule No

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 7.3 WARNING CLASSES

5 TECHNICAL WHITEPAPER

SEI CERT C++ CODING STANDARD BROAD MAPPING (CODESONAR V7.3)

The following table contains CodeSonar warning classes that are broadly mapped to CERT-C++ rules and

recommendations.

Rule Rule Name Category Supported

CERT-CPP:CON50-CPP Do not destroy a mutex while it is locked Rule Yes

CERT-CPP:CON51-CPP Ensure actively held locks are released on exceptional conditions Rule Yes

CERT-CPP:CON52-CPP Prevent data races when accessing bit-fields from multiple threads Rule Yes

CERT-CPP:CON53-CPP Avoid deadlock by locking in a predefined order Rule Yes

CERT-CPP:CON54-CPP Wrap functions that can spuriously wake up in a loop Rule Yes

CERT-CPP:CON55-CPP Preserve thread safety and liveness when using condition variables Rule Yes

CERT-CPP:CON56-CPP Do not speculatively lock a non-recursive mutex that is already owned by the calling thread Rule Yes

CERT-CPP:CTR50-CPP Guarantee that container indices and iterators are within the valid range Rule Yes

CERT-CPP:CTR51-CPP Use valid references, pointers, and iterators to reference elements of a container Rule Yes

CERT-CPP:CTR52-CPP Guarantee that library functions do not overflow Rule Yes

CERT-CPP:CTR53-CPP Use valid iterator ranges Rule Yes

CERT-CPP:CTR54-CPP Do not subtract iterators that do not refer to the same container Rule Yes

CERT-CPP:CTR55-CPP Do not use an additive operator on an iterator if the result would overflow Rule Yes

CERT-CPP:CTR56-CPP Do not use pointer arithmetic on polymorphic objects Rule Yes

CERT-CPP:CTR57-CPP Provide a valid ordering predicate Rule No

CERT-CPP:CTR58-CPP Predicate function objects should not be mutable Rule No

CERT-CPP:DCL50-CPP Do not define a C-style variadic function Rule Yes

CERT-CPP:DCL51-CPP Do not declare or define a reserved identifier Rule Yes

CERT-CPP:DCL52-CPP Never qualify a reference type with const or volatile Rule Yes

CERT-CPP:DCL53-CPP Do not write syntactically ambiguous declarations Rule Yes

CERT-CPP:DCL54-CPP Overload allocation and deallocation functions as a pair in the same scope Rule Yes

CERT-CPP:DCL55-CPP Avoid information leakage when passing a class object across a trust boundary Rule Yes

CERT-CPP:DCL56-CPP Avoid cycles during initialization of static objects Rule Yes

CERT-CPP:DCL57-CPP Do not let exceptions escape from destructors or deallocation functions Rule Yes

CERT-CPP:DCL58-CPP Do not modify the standard namespaces Rule Yes

CERT-CPP:DCL59-CPP Do not define an unnamed namespace in a header file Rule Yes

CERT-CPP:DCL60-CPP Obey the one-definition rule Rule Yes

CERT-CPP:ERR50-CPP Do not abruptly terminate the program Rule Yes

CERT-CPP:ERR51-CPP Handle all exceptions Rule Yes

CERT-CPP:ERR52-CPP Do not use setjmp() or longjmp() Rule Yes

CERT-CPP:ERR53-CPP
Do not reference base classes or class data members in a constructor or destructor function-try-block
handler

Rule No

CERT-CPP:ERR54-CPP Catch handlers should order their parameter types from most derived to least derived Rule Yes

CERT-CPP:ERR55-CPP Honor exception specifications Rule Yes

CERT-CPP:ERR56-CPP Guarantee exception safety Rule Yes

CERT-CPP:ERR57-CPP Do not leak resources when handling exceptions Rule Yes

CERT-CPP:ERR58-CPP Handle all exceptions thrown before main() begins executing Rule Yes

CERT-CPP:ERR59-CPP Do not throw an exception across execution boundaries Rule No

CERT-CPP:ERR60-CPP Exception objects must be nothrow copy constructible Rule No

CERT-CPP:ERR61-CPP Catch exceptions by lvalue reference Rule Yes

CERT-CPP:ERR62-CPP Detect errors when converting a string to a number Rule Yes

CERT-CPP:EXP50-CPP Do not depend on the order of evaluation for side effects Rule Yes

SEI CERT-C++ RULES AND RECOMMENDATIONS MAPPED TO CODESONAR® 7.3 WARNING CLASSES

6 TECHNICAL WHITEPAPER

CERT-CPP:EXP51-CPP Do not delete an array through a pointer of the incorrect type Rule Yes

CERT-CPP:EXP52-CPP Do not rely on side effects in unevaluated operands Rule Yes

CERT-CPP:EXP53-CPP Do not read uninitialized memory Rule Yes

CERT-CPP:EXP54-CPP Do not access an object outside of its lifetime Rule Yes

CERT-CPP:EXP55-CPP Do not access a cv-qualified object through a cv-unqualified type Rule Yes

CERT-CPP:EXP56-CPP Do not call a function with a mismatched language linkage Rule No

CERT-CPP:EXP57-CPP Do not cast or delete pointers to incomplete classes Rule Yes

CERT-CPP:EXP58-CPP Pass an object of the correct type to va_start Rule Yes

CERT-CPP:EXP59-CPP Use offsetof() on valid types and members Rule Yes

CERT-CPP:EXP60-CPP Do not pass a nonstandard-layout type object across execution boundaries Rule No

CERT-CPP:EXP61-CPP A lambda object must not outlive any of its reference captured objects Rule No

CERT-CPP:EXP62-CPP Do not access the bits of an object representation that are not part of the object's value representation Rule Yes

CERT-CPP:EXP63-CPP Do not rely on the value of a moved-from object Rule Yes

CERT-CPP:FIO50-CPP Do not alternately input and output from a file stream without an intervening positioning call Rule Yes

CERT-CPP:FIO51-CPP Close files when they are no longer needed Rule Yes

CERT-CPP:INT50-CPP Do not cast to an out-of-range enumeration value Rule Yes

CERT-CPP:MEM50-CPP Do not access freed memory Rule Yes

CERT-CPP:MEM51-CPP Properly deallocate dynamically allocated resources Rule Yes

CERT-CPP:MEM52-CPP Detect and handle memory allocation errors Rule Yes

CERT-CPP:MEM53-CPP Explicitly construct and destruct objects when manually managing object lifetime Rule Yes

CERT-CPP:MEM54-CPP Provide placement new with properly aligned pointers to sufficient storage capacity Rule Yes

CERT-CPP:MEM55-CPP Honor replacement dynamic storage management requirements Rule No

CERT-CPP:MEM56-CPP Do not store an already-owned pointer value in an unrelated smart pointer Rule Yes

CERT-CPP:MEM57-CPP Avoid using default operator new for over-aligned types Rule No

CERT-CPP:MSC50-CPP Do not use std::rand() for generating pseudorandom numbers Rule Yes

CERT-CPP:MSC51-CPP Ensure your random number generator is properly seeded Rule Yes

CERT-CPP:MSC52-CPP Value-returning functions must return a value from all exit paths Rule Yes

CERT-CPP:MSC53-CPP Do not return from a function declared [[noreturn]] Rule Yes

CERT-CPP:MSC54-CPP A signal handler must be a plain old function Rule No

CERT-CPP:OOP50-CPP Do not invoke virtual functions from constructors or destructors Rule Yes

CERT-CPP:OOP51-CPP Do not slice derived objects Rule Yes

CERT-CPP:OOP52-CPP Do not delete a polymorphic object without a virtual destructor Rule Yes

CERT-CPP:OOP53-CPP Write constructor member initializers in the canonical order Rule Yes

CERT-CPP:OOP54-CPP Gracefully handle self-copy assignment Rule Yes

CERT-CPP:OOP55-CPP Do not use pointer-to-member operators to access nonexistent members Rule Yes

CERT-CPP:OOP56-CPP Honor replacement handler requirements Rule No

CERT-CPP:OOP57-CPP Prefer special member functions and overloaded operators to C Standard Library functions Rule Yes

CERT-CPP:OOP58-CPP Copy operations must not mutate the source object Rule Yes

CERT-CPP:STR50-CPP Guarantee that storage for strings has sufficient space for character data and the null terminator Rule Yes

CERT-CPP:STR51-CPP Do not attempt to create a std::string from a null pointer Rule Yes

CERT-CPP:STR52-CPP Use valid references, pointers, and iterators to reference elements of a basic_string Rule Yes

CERT-CPP:STR53-CPP Range check element access Rule Yes

