
1 TECHNICAL

WHITEPAPER

AUTOSAR AP RELEASE 18-10 CATEGORIES

MAPPED TO CODESONAR® 7.3

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

http://www.grammatech.com/

2 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

INTRODUCTION

AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development
partnership of vehicle manufacturers, suppliers, service providers and companies from the
automotive electronics, semiconductor and software industry.

For more information on AUTOSAR:

https://www.autosar.org/about/

The remainder of this document comprises two tables:

• A table showing the close mapping between CodeSonar warning classes and the
AUTOSAR categories.

• A table showing the broad mapping between CodeSonar warning classes and the
AUTOSAR categories. The broad mapping for a CodeSonar warning class includes the
close mapping for the class, plus any other checks that are related to the class in a
meaningful way, but not eligible for the close mapping.

https://www.autosar.org/about/

3 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSAR CLOSE MAPPING (CODESONAR V7.3)

The following table contains CodeSonar warning classes that are closely mapped to

AUTOSAR categories.

Rule Rule Name
Obligation

Level
Supported

AUTOSARC++14:A0-1-1
A project shall not contain instances of non-volatile variables being given values that
are not subsequently used.

Required Yes

AUTOSARC++14:M0-1-1 A project shall not contain unreachable code. Required Yes

AUTOSARC++14:A0-1-2
The value returned by a function having a non-void return type that is not an

overloaded operator shall be used.
Required Yes

AUTOSARC++14:M0-1-2 A project shall not contain infeasible paths. Required Yes

AUTOSARC++14:A0-1-3
Every function defined in an anonymous namespace, or static function with internal
linkage, or private member function shall be used.

Required No

AUTOSARC++14:M0-1-3 A project shall not contain unused variables. Required Yes

AUTOSARC++14:A0-1-4 There shall be no unused named parameters in non-virtual functions. Required Yes

AUTOSARC++14:M0-1-4 A project shall not contain non-volatile POD variables having only one use. Required Yes

AUTOSARC++14:A0-1-5
There shall be no unused named parameters in the set of parameters for a virtual

function and all the functions that override it.
Required Yes

AUTOSARC++14:A0-1-6 There should be no unused type declarations. Advisory Yes

AUTOSARC++14:M0-1-8 All functions with void return type shall have external side effect(s). Required Yes

AUTOSARC++14:M0-1-9 There shall be no dead code. Required Yes

AUTOSARC++14:M0-1-10 Every defined function should be called at least once. Advisory No

AUTOSARC++14:M0-2-1 An object shall not be assigned to an overlapping object. Required Yes

AUTOSARC++14:M0-3-1
Minimization of run-time failures shall be ensured by the use of at least one of: (a)
static analysis tools/techniques; (b) dynamic analysis tools/techniques; (c) explicit

coding of checks to handle run-time faults.

Required No

AUTOSARC++14:M0-3-2 If a function generates error information, then that error information shall be tested. Required Yes

AUTOSARC++14:A0-4-1 Floating-point implementation shall comply with IEEE 754 standard. Required No

AUTOSARC++14:M0-4-1 Use of scaled-integer or fixed-point arithmetic shall be documented. Required No

AUTOSARC++14:A0-4-2 Type long double shall not be used. Required No

AUTOSARC++14:M0-4-2 Use of floating-point arithmetic shall be documented. Required No

AUTOSARC++14:A0-4-3
The implementations in the chosen compiler shall strictly comply with the C++14
Language Standard.

Required No

AUTOSARC++14:A0-4-4 Range, domain and pole errors shall be checked when using math functions. Required Yes

AUTOSARC++14:M1-0-2 Multiple compilers shall only be used if they have a common, defined interface. Required No

AUTOSARC++14:A1-1-1
All code shall conform to ISO/IEC 14882:2014 - Programming Language C++ and
shall not use deprecated features.

Required Yes

AUTOSARC++14:A1-1-2
A warning level of the compilation process shall be set in compliance with project
policies.

Required Yes

AUTOSARC++14:A1-1-3
An optimization option that disregards strict standard compliance shall not be turned on
in the chosen compiler.

Required No

AUTOSARC++14:A1-2-1

When using a compiler toolchain (including preprocessor, compiler itself, linker, C++

standard libraries) in safety-related software, the tool confidence level (TCL) shall be
determined. In case of TCL2 or TCL3, the compiler shall undergo a "Qualification of a
software tool", as per ISO 26262-8.11.4.6.

Required No

AUTOSARC++14:A1-4-1
Code metrics and their valid boundaries shall be defined and code shall comply with
defined boundaries of code metrics.

Required Yes

AUTOSARC++14:A1-4-3 All code should compile free of compiler warnings. Advisory No

AUTOSARC++14:A2-3-1
Only those characters specified in the C++ Language Standard basic source character
set shall be used in the source code.

Required No

4 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A2-5-1 Trigraphs shall not be used. Required Yes

AUTOSARC++14:A2-5-2 Digraphs shall not be used. Required No

AUTOSARC++14:A2-7-1 The character \ shall not occur as a last character of a C++ comment. Required Yes

AUTOSARC++14:M2-7-1 The character sequence /* shall not be used within a C-style comment. Required Yes

AUTOSARC++14:A2-7-2 Sections of code shall not be "commented out". Required Yes

AUTOSARC++14:A2-7-3
All declarations of "user-defined" types, static and non-static data members, functions
and methods shall be preceded by documentation.

Required No

AUTOSARC++14:A2-7-5
Comments shall not document any actions or sources (e.g. tables, figures, paragraphs,
etc.) that are outside of the file.

Required No

AUTOSARC++14:A2-8-1 A header file name should reflect the logical entity for which it provides declarations. Required No

AUTOSARC++14:A2-8-2
An implementation file name should reflect the logical entity for which it provides
definitions.

Advisory No

AUTOSARC++14:A2-10-1
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Required Yes

AUTOSARC++14:M2-10-1 Different identifiers shall be typographically unambiguous. Required Yes

AUTOSARC++14:A2-10-4
The identifier name of a non-member object with static storage duration or static
function shall not be reused within a namespace.

Required Yes

AUTOSARC++14:A2-10-5
An identifier name of a function with static storage duration or a non-member object
with external or internal linkage should not be reused.

Advisory Yes

AUTOSARC++14:A2-10-6
A class or enumeration name shall not be hidden by a variable, function or enumerator
declaration in the same scope.

Required No

AUTOSARC++14:A2-11-1 Volatile keyword shall not be used. Required No

AUTOSARC++14:A2-13-1 Only those escape sequences that are defined in ISO/IEC 14882:2014 shall be used. Required No

AUTOSARC++14:A2-13-2 String literals with different encoding prefixes shall not be concatenated. Required No

AUTOSARC++14:M2-13-2
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used.

Required Yes

AUTOSARC++14:A2-13-3 Type wchar_t shall not be used. Required No

AUTOSARC++14:M2-13-3
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned
type.

Required Yes

AUTOSARC++14:A2-13-4 String literals shall not be assigned to non-constant pointers. Required Yes

AUTOSARC++14:M2-13-4 Literal suffixes shall be upper case. Required Yes

AUTOSARC++14:A2-13-5 Hexadecimal constants should be upper case. Advisory No

AUTOSARC++14:A2-13-6 Universal character names shall be used only inside character or string literals. Required No

AUTOSARC++14:A3-1-1
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule.

Required Yes

AUTOSARC++14:A3-1-2
Header files, that are defined locally in the project, shall have a file name extension of
one of: ".h", ".hpp" or ".hxx".

Required No

AUTOSARC++14:M3-1-2 Functions shall not be declared at block scope. Required Yes

AUTOSARC++14:A3-1-3
Implementation files, that are defined locally in the project, should have a file name
extension of ".cpp".

Advisory No

AUTOSARC++14:A3-1-4 When an array with external linkage is declared, its size shall be stated explicitly. Required Yes

AUTOSARC++14:A3-1-5

A function definition shall only be placed in a class definition if (1) the function is

intended to be inlined (2) it is a member function template (3) it is a member function
of a class template.

Required No

AUTOSARC++14:A3-1-6 Trivial accessor and mutator functions should be inlined. Advisory No

AUTOSARC++14:M3-2-1 All declarations of an object or function shall have compatible types. Required Yes

AUTOSARC++14:M3-2-2 The One Definition Rule shall not be violated. Required Yes

AUTOSARC++14:M3-2-3
A type, object or function that is used in multiple translation units shall be declared in
one and only one file.

Required Yes

AUTOSARC++14:M3-2-4 An identifier with external linkage shall have exactly one definition. Required Yes

5 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A3-3-1
Objects or functions with external linkage (including members of named namespaces)
shall be declared in a header file.

Required No

AUTOSARC++14:A3-3-2 Static and thread-local objects shall be constant-initialized. Required Yes

AUTOSARC++14:M3-3-2
If a function has internal linkage then all re-declarations shall include the static storage
class specifier.

Required No

AUTOSARC++14:M3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes
its visibility.

Required Yes

AUTOSARC++14:A3-8-1 An object shall not be accessed outside of its lifetime. Required Yes

AUTOSARC++14:A3-9-1
Fixed width integer types from , indicating the size and signedness, shall be used in

place of the basic numerical types.
Required Yes

AUTOSARC++14:M3-9-1
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations.

Required Yes

AUTOSARC++14:M3-9-3 The underlying bit representations of floating-point values shall not be used. Required Yes

AUTOSARC++14:A4-5-1

Expressions with type enum or enum class shall not be used as operands to built-in and
overloaded operators other than the subscript operator [], the assignment operator =,
the equality operators == and ! =, the unary & operator, and the relational operators <,
<=, >, >=.

Required Yes

AUTOSARC++14:M4-5-1
Expressions with type bool shall not be used as operands to built-in operators other
than the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and ! =, the unary & operator, and the conditional operator.

Required Yes

AUTOSARC++14:M4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and ! =, and
the unary & operator.

Required Yes

AUTOSARC++14:A4-7-1 An integer expression shall not lead to data loss. Required Yes

AUTOSARC++14:A4-10-1 Only nullptr literal shall be used as the null-pointer-constant. Required No

AUTOSARC++14:M4-10-1 NULL shall not be used as an integer value. Required Yes

AUTOSARC++14:M4-10-2 Literal zero (0) shall not be used as the null-pointer-constant. Required Yes

AUTOSARC++14:A5-0-1
The value of an expression shall be the same under any order of evaluation that the
standard permits.

Required Yes

AUTOSARC++14:A5-0-2
The condition of an if-statement and the condition of an iteration statement shall have
type bool.

Required Yes

AUTOSARC++14:M5-0-2 Limited dependence should be placed on C++ operator precedence rules in expressions. Advisory Yes

AUTOSARC++14:A5-0-3 The declaration of objects shall contain no more than two levels of pointer indirection. Required Yes

AUTOSARC++14:M5-0-3 A cvalue expression shall not be implicitly converted to a different underlying type. Required Yes

AUTOSARC++14:A5-0-4 Pointer arithmetic shall not be used with pointers to non-final classes. Required Yes

AUTOSARC++14:M5-0-4 An implicit integral conversion shall not change the signedness of the underlying type. Required Yes

AUTOSARC++14:M5-0-5 There shall be no implicit floating-integral conversions. Required Yes

AUTOSARC++14:M5-0-6
An implicit integral or floating-point conversion shall not reduce the size of the
underlying type.

Required Yes

AUTOSARC++14:M5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression. Required Yes

AUTOSARC++14:M5-0-8
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression.

Required Yes

AUTOSARC++14:M5-0-9
An explicit integral conversion shall not change the signedness of the underlying type
of a cvalue expression.

Required Yes

AUTOSARC++14:M5-0-10

If the bitwise operators ~ and << are applied to an operand with an underlying type of

unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

Required Yes

AUTOSARC++14:M5-0-11 The plain char type shall only be used for the storage and use of character values. Required Yes

AUTOSARC++14:M5-0-12
Signed char and unsigned char type shall only be used for the storage and use of
numeric values.

Required Yes

AUTOSARC++14:M5-0-14 The first operand of a conditional-operator shall have type bool. Required Yes

AUTOSARC++14:M5-0-15 Array indexing shall be the only form of pointer arithmetic. Required Yes

6 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:M5-0-16
A pointer operand and any pointer resulting from pointer arithmetic using that operand
shall both address elements of the same array.

Required Yes

AUTOSARC++14:M5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Required Yes

AUTOSARC++14:M5-0-18
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array.

Required Yes

AUTOSARC++14:M5-0-20
Non-constant operands to a binary bitwise operator shall have the same underlying
type.

Required Yes

AUTOSARC++14:M5-0-21 Bitwise operators shall only be applied to operands of unsigned underlying type. Required Yes

AUTOSARC++14:A5-1-1
Literal values shall not be used apart from type initialization, otherwise symbolic
names shall be used instead.

Required No

AUTOSARC++14:A5-1-2 Variables shall not be implicitly captured in a lambda expression. Required Yes

AUTOSARC++14:A5-1-3 Parameter list (possibly empty) shall be included in every lambda expression. Required Yes

AUTOSARC++14:A5-1-4 A lambda expression object shall not outlive any of its reference-captured objects. Required No

AUTOSARC++14:A5-1-6 Return type of a non-void return type lambda expression should be explicitly specified. Advisory Yes

AUTOSARC++14:A5-1-7 A lambda shall not be an operand to decltype or typeid. Required No

AUTOSARC++14:A5-1-8 Lambda expressions should not be defined inside another lambda expression. Advisory No

AUTOSARC++14:A5-1-9
Identical unnamed lambda expressions shall be replaced with a named function or a
named lambda expression.

Advisory No

AUTOSARC++14:A5-2-1 dynamic_cast should not be used. Advisory No

AUTOSARC++14:A5-2-2 Traditional C-style casts shall not be used. Required Yes

AUTOSARC++14:M5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by
means of dynamic_cast.

Required Yes

AUTOSARC++14:A5-2-3
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference.

Required Yes

AUTOSARC++14:M5-2-3
Casts from a base class to a derived class should not be performed on polymorphic

types.
Advisory No

AUTOSARC++14:A5-2-4 reinterpret_cast shall not be used. Required Yes

AUTOSARC++14:A5-2-5 An array or container shall not be accessed beyond its range. Required Yes

AUTOSARC++14:A5-2-6
The operands of a logical && or || shall be parenthesized if the operands contain binary
operators.

Required No

AUTOSARC++14:M5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Required Yes

AUTOSARC++14:M5-2-8
An object with integer type or pointer to void type shall not be converted to an object
with pointer type.

Required Yes

AUTOSARC++14:M5-2-9 A cast shall not convert a pointer type to an integral type. Required Yes

AUTOSARC++14:M5-2-10
The increment (++) and decrement (--) operators shall not be mixed with other

operators in an expression.
Required Yes

AUTOSARC++14:M5-2-11 The comma operator, && operator and the || operator shall not be overloaded. Required Yes

AUTOSARC++14:M5-2-12 An identifier with array type passed as a function argument shall not decay to a pointer. Required Yes

AUTOSARC++14:A5-3-1 Evaluation of the operand to the typeid operator shall not contain side effects. Required No

AUTOSARC++14:M5-3-1
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool.

Required Yes

AUTOSARC++14:A5-3-2 Null pointers shall not be dereferenced. Required Yes

AUTOSARC++14:M5-3-2
The unary minus operator shall not be applied to an expression whose underlying type

is unsigned.
Required Yes

AUTOSARC++14:A5-3-3 Pointers to incomplete class types shall not be deleted. Required No

AUTOSARC++14:M5-3-3 The unary & operator shall not be overloaded. Required Yes

AUTOSARC++14:M5-3-4 Evaluation of the operand to the sizeof operator shall not contain side effects. Required Yes

AUTOSARC++14:A5-5-1 A pointer to member shall not access non-existent class members. Required No

7 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A5-6-1
The right hand operand of the integer division or remainder operators shall not be equal
to zero.

Required Yes

AUTOSARC++14:M5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand.

Required Yes

AUTOSARC++14:A5-10-1
A pointer to member virtual function shall only be tested for equality with null-pointer-
constant.

Required No

AUTOSARC++14:M5-14-1 The right hand operand of a logical &&, || operators shall not contain side effects. Required Yes

AUTOSARC++14:A5-16-1 The ternary conditional operator shall not be used as a sub-expression. Required No

AUTOSARC++14:M5-17-1
The semantic equivalence between a binary operator and its assignment operator form

shall be preserved.
Required No

AUTOSARC++14:M5-18-1 The comma operator shall not be used. Required Yes

AUTOSARC++14:M5-19-1 Evaluation of constant unsigned integer expressions shall not lead to wrap-around. Required No

AUTOSARC++14:A6-2-1
Move and copy assignment operators shall either move or respectively copy base
classes and data members of a class, without any side effects.

Required No

AUTOSARC++14:M6-2-1 Assignment operators shall not be used in sub-expressions. Required Yes

AUTOSARC++14:A6-2-2
Expression statements shall not be explicit calls to constructors of temporary objects
only.

Required No

AUTOSARC++14:M6-2-2
Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
Required Yes

AUTOSARC++14:M6-2-3

Before preprocessing, a null statement shall only occur on a line by itself; it may be

followed by a comment, provided that the first character following the null statement is
a white-space character.

Required No

AUTOSARC++14:M6-3-1
The statement forming the body of a switch, while, do ... while or for statement shall be

a compound statement.
Required Yes

AUTOSARC++14:A6-4-1 A switch statement shall have at least two case-clauses, distinct from the default label. Required Yes

AUTOSARC++14:M6-4-1
An if (condition) construct shall be followed by a compound statement. The else
keyword shall be followed by either a compound statement, or another if statement.

Required Yes

AUTOSARC++14:M6-4-2 All if ... else if constructs shall be terminated with an else clause. Required Yes

AUTOSARC++14:M6-4-3 A switch statement shall be a well-formed switch statement. Required Yes

AUTOSARC++14:M6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

Required Yes

AUTOSARC++14:M6-4-5
An unconditional throw or break statement shall terminate every non-empty switch-
clause.

Required Yes

AUTOSARC++14:M6-4-6 The final clause of a switch statement shall be the default-clause. Required Yes

AUTOSARC++14:M6-4-7 The condition of a switch statement shall not have bool type. Required Yes

AUTOSARC++14:A6-5-1
A for-loop that loops through all elements of the container and does not use its loop-
counter shall not be used.

Required No

AUTOSARC++14:A6-5-2 A for loop shall contain a single loop-counter which shall not have floating-point type. Required Yes

AUTOSARC++14:M6-5-2
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter
shall only be used as an operand to <=, <, > or >=.

Required No

AUTOSARC++14:A6-5-3 Do statements should not be used. Advisory No

AUTOSARC++14:M6-5-3 The loop-counter shall not be modified within condition or statement. Required Yes

AUTOSARC++14:A6-5-4
For-init-statement and expression should not perform actions other than loop-counter
initialization and modification.

Advisory Yes

AUTOSARC++14:M6-5-4
The loop-counter shall be modified by one of: --, ++, - = n, or + = n; where n remains
constant for the duration of the loop.

Required Yes

AUTOSARC++14:M6-5-5
A loop-control-variable other than the loop-counter shall not be modified within
condition or expression.

Required Yes

AUTOSARC++14:M6-5-6
A loop-control-variable other than the loop-counter which is modified in statement
shall have type bool.

Required No

AUTOSARC++14:A6-6-1 The goto statement shall not be used. Required Yes

AUTOSARC++14:M6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement.

Required Yes

8 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:M6-6-2 The goto statement shall jump to a label declared later in the same function body. Required Yes

AUTOSARC++14:M6-6-3 The continue statement shall only be used within a well-formed for loop. Required Yes

AUTOSARC++14:A7-1-1 Constexpr or const specifiers shall be used for immutable data declaration. Required Yes

AUTOSARC++14:A7-1-2 The constexpr specifier shall be used for values that can be determined at compile time. Required No

AUTOSARC++14:M7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified.

Required Yes

AUTOSARC++14:A7-1-3
CV-qualifiers shall be placed on the right hand side of the type that is a typedef or a
using name.

Required No

AUTOSARC++14:A7-1-4 The register keyword shall not be used. Required No

AUTOSARC++14:A7-1-5

The auto specifier shall not be used apart from following cases: (1) to declare that a
variable has the same type as return type of a function call, (2) to declare that a variable
has the same type as initializer of non-fundamental type, (3) to declare parameters of a
generic lambda expression, (4) to declare a function template using trailing return type
syntax.

Required No

AUTOSARC++14:A7-1-6 The typedef specifier shall not be used. Required No

AUTOSARC++14:A7-1-7 Each expression statement and identifier declaration shall be placed on a separate line. Required Yes

AUTOSARC++14:A7-1-8 A non-type specifier shall be placed before a type specifier in a declaration. Required No

AUTOSARC++14:A7-1-9 A class, structure, or enumeration shall not be declared in the definition of its type. Required No

AUTOSARC++14:A7-2-1
An expression with enum underlying type shall only have values corresponding to the
enumerators of the enumeration.

Required Yes

AUTOSARC++14:A7-2-2 Enumeration underlying base type shall be explicitly defined. Required No

AUTOSARC++14:A7-2-3 Enumerations shall be declared as scoped enum classes. Required No

AUTOSARC++14:A7-2-4
In an enumeration, either (1) none, (2) the first or (3) all enumerators shall be
initialized.

Required Yes

AUTOSARC++14:A7-2-5 Enumerations should be used to represent sets of related named constants. Advisory No

AUTOSARC++14:A7-3-1 All overloads of a function shall be visible from where it is called. Required Yes

AUTOSARC++14:M7-3-1
The global namespace shall only contain main, namespace declarations and extern "C"
declarations.

Required Yes

AUTOSARC++14:M7-3-2 The identifier main shall not be used for a function other than the global function main. Required No

AUTOSARC++14:M7-3-3 There shall be no unnamed namespaces in header files. Required Yes

AUTOSARC++14:M7-3-4 Using-directives shall not be used. Required Yes

AUTOSARC++14:M7-3-6
Using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

Required Yes

AUTOSARC++14:A7-4-1 The asm declaration shall not be used. Required Yes

AUTOSARC++14:M7-4-1 All usage of assembler shall be documented. Required No

AUTOSARC++14:M7-4-2 Assembler instructions shall only be introduced using the asm declaration. Required Yes

AUTOSARC++14:M7-4-3 Assembly language shall be encapsulated and isolated. Required Yes

AUTOSARC++14:A7-5-1
A function shall not return a reference or a pointer to a parameter that is passed by
reference to const.

Required No

AUTOSARC++14:M7-5-1
A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.
Required Yes

AUTOSARC++14:A7-5-2 Functions shall not call themselves, either directly or indirectly. Required Yes

AUTOSARC++14:M7-5-2
The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist.

Required Yes

AUTOSARC++14:A7-6-1 Functions declared with the [[noreturn]] attribute shall not return. Required Yes

AUTOSARC++14:M8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-
declarator or member-declarator respectively.

Required No

AUTOSARC++14:A8-2-1
When declaring function templates, the trailing return type syntax shall be used if the
return type depends on the type of parameters.

Required No

AUTOSARC++14:M8-3-1
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments.

Required Yes

9 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A8-4-1 Functions shall not be defined using the ellipsis notation. Required Yes

AUTOSARC++14:A8-4-2
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Required Yes

AUTOSARC++14:M8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be
identical to those in the declaration.

Required Yes

AUTOSARC++14:A8-4-3 Common ways of passing parameters should be used. Advisory No

AUTOSARC++14:A8-4-4 Multiple output values from a function should be returned as a struct or tuple. Advisory No

AUTOSARC++14:M8-4-4
A function identifier shall either be used to call the function or it shall be preceded by
&.

Required Yes

AUTOSARC++14:A8-4-5 "consume" parameters declared as X && shall always be moved from. Required No

AUTOSARC++14:A8-4-6 "forward" parameters declared as T && shall always be forwarded. Required No

AUTOSARC++14:A8-4-7 "in" parameters for "cheap to copy" types shall be passed by value. Required No

AUTOSARC++14:A8-4-8 Output parameters shall not be used. Required No

AUTOSARC++14:A8-4-9 "in-out" parameters declared as T & shall be modified. Required No

AUTOSARC++14:A8-4-10 A parameter shall be passed by reference if it can't be NULL. Required No

AUTOSARC++14:A8-4-11
A smart pointer shall only be used as a parameter type if it expresses lifetime
semantics.

Required No

AUTOSARC++14:A8-4-12
A std::unique_ptr shall be passed to a function as: (1) a copy to express the function
assumes ownership (2) an lvalue reference to express that the function replaces the
managed object.

Required No

AUTOSARC++14:A8-4-13

A std::shared_ptr shall be passed to a function as: (1) a copy to express the function
shares ownership (2) an lvalue reference to express that the function replaces the
managed object (3) a const lvalue reference to express that the function retains a
reference count.

Required No

AUTOSARC++14:A8-4-14 Interfaces shall be precisely and strongly typed. Required No

AUTOSARC++14:A8-5-0 All memory shall be initialized before it is read. Required Yes

AUTOSARC++14:A8-5-1

In an initialization list, the order of initialization shall be following: (1) virtual base
classes in depth and left to right order of the inheritance graph, (2) direct base classes in
left to right order of inheritance list, (3) non-static data members in the order they were
declared in the class definition.

Required Yes

AUTOSARC++14:A8-5-2 Braced-initialization {}, without equals sign, shall be used for variable initialization. Required No

AUTOSARC++14:M8-5-2
Braces shall be used to indicate and match the structure in the non-zero initialization of
arrays and structures.

Required Yes

AUTOSARC++14:A8-5-3 A variable of type auto shall not be initialized using {} or ={} braced-initialization. Required No

AUTOSARC++14:A8-5-4
If a class has a user-declared constructor that takes a parameter of type
std::initializer_list, then it shall be the only constructor apart from special member
function constructors.

Advisory No

AUTOSARC++14:A9-3-1
Member functions shall not return non-const "raw" pointers or references to private or
protected data owned by the class.

Required No

AUTOSARC++14:M9-3-1 Const member functions shall not return non-const pointers or references to class-data. Required No

AUTOSARC++14:M9-3-3
If a member function can be made static then it shall be made static, otherwise if it can
be made const then it shall be made const.

Required Yes

AUTOSARC++14:A9-5-1 Unions shall not be used. Required Yes

AUTOSARC++14:A9-6-1
Data types used for interfacing with hardware or conforming to communication
protocols shall be trivial, standard-layout and only contain members of types with
defined sizes.

Required No

AUTOSARC++14:M9-6-1
When the absolute positioning of bits representing a bit-field is required, then the
behavior and packing of bit-fields shall be documented.

Required No

AUTOSARC++14:A9-6-2
Bit-fields shall be used only when interfacing to hardware or conforming to
communication protocols.

Required No

AUTOSARC++14:M9-6-4 Named bit-fields with signed integer type shall have a length of more than one bit. Required Yes

AUTOSARC++14:A10-0-1 Public inheritance shall be used to implement "is-a" relationship. Required No

AUTOSARC++14:A10-0-2 Membership or non-public inheritance shall be used to implement "has-a" relationship. Required No

10 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A10-1-1 Class shall not be derived from more than one base class which is not an interface class. Required No

AUTOSARC++14:M10-1-1 Classes should not be derived from virtual bases. Advisory Yes

AUTOSARC++14:M10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy. Required Yes

AUTOSARC++14:M10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy. Required Yes

AUTOSARC++14:A10-2-1
Non-virtual public or protected member functions shall not be redefined in derived
classes.

Required No

AUTOSARC++14:M10-2-1 All accessible entity names within a multiple inheritance hierarchy should be unique. Advisory No

AUTOSARC++14:A10-3-1
Virtual function declaration shall contain exactly one of the three specifiers: (1) virtual,
(2) override, (3) final.

Required No

AUTOSARC++14:A10-3-2 Each overriding virtual function shall be declared with the override or final specifier. Required No

AUTOSARC++14:A10-3-3 Virtual functions shall not be introduced in a final class. Required No

AUTOSARC++14:M10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
Required No

AUTOSARC++14:A10-3-5 A user-defined assignment operator shall not be virtual. Required No

AUTOSARC++14:A10-4-1 Hierarchies should be based on interface classes. Advisory No

AUTOSARC++14:A11-0-1 A non-POD type should be defined as class. Advisory No

AUTOSARC++14:M11-0-1 Member data in non-POD class types shall be private. Required No

AUTOSARC++14:A11-0-2

A type defined as struct shall: (1) provide only public data members, (2) not provide

any special member functions or methods, (3) not be a base of another struct or class,
(4) not inherit from another struct or class.

Required No

AUTOSARC++14:A11-3-1 Friend declarations shall not be used. Required No

AUTOSARC++14:A12-0-1
If a class declares a copy or move operation, or a destructor, either via "=default",
"=delete", or via a user-provided declaration, then all others of these five special

member functions shall be declared as well.

Required No

AUTOSARC++14:A12-0-2
Bitwise operations and operations that assume data representation in memory shall not
be performed on objects.

Required No

AUTOSARC++14:A12-1-1
Constructors shall explicitly initialize all virtual base classes, all direct non-virtual base
classes and all non-static data members.

Required No

AUTOSARC++14:M12-1-1
An object's dynamic type shall not be used from the body of its constructor or
destructor.

Required Yes

AUTOSARC++14:A12-1-2
Both NSDMI and a non-static member initializer in a constructor shall not be used in
the same type.

Required No

AUTOSARC++14:A12-1-3
If all user-defined constructors of a class initialize data members with constant values
that are the same across all constructors, then data members shall be initialized using
NSDMI instead.

Required No

AUTOSARC++14:A12-1-4
All constructors that are callable with a single argument of fundamental type shall be
declared explicit.

Required No

AUTOSARC++14:A12-1-5
Common class initialization for non-constant members shall be done by a delegating
constructor.

Required No

AUTOSARC++14:A12-1-6
Derived classes that do not need further explicit initialization and require all the
constructors from the base class shall use inheriting constructors.

Required No

AUTOSARC++14:A12-4-1
Destructor of a base class shall be public virtual, public override or protected non-
virtual.

Required Yes

AUTOSARC++14:A12-4-2 If a public destructor of a class is non-virtual, then the class should be declared final. Advisory No

AUTOSARC++14:A12-6-1
All class data members that are initialized by the constructor shall be initialized using

member initializers.
Required No

AUTOSARC++14:A12-7-1
If the behavior of a user-defined special member function is identical to implicitly
defined special member function, then it shall be defined "=default" or be left

undefined.

Required No

AUTOSARC++14:A12-8-1
Move and copy constructors shall move and respectively copy base classes and data
members of a class, without any side effects.

Required Yes

AUTOSARC++14:A12-8-2
User-defined copy and move assignment operators should use user-defined no-throw
swap function.

Advisory No

11 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A12-8-3 Moved-from object shall not be read-accessed. Required No

AUTOSARC++14:A12-8-4
Move constructor shall not initialize its class members and base classes using copy
semantics.

Required No

AUTOSARC++14:A12-8-5 A copy assignment and a move assignment operators shall handle self-assignment. Required No

AUTOSARC++14:A12-8-6
Copy and move constructors and copy assignment and move assignment operators shall
be declared protected or defined "=delete" in base class.

Required Yes

AUTOSARC++14:A12-8-7 Assignment operators should be declared with the ref-qualifier &. Advisory No

AUTOSARC++14:A13-1-2
User defined suffixes of the user defined literal operators shall start with underscore
followed by one or more letters.

Required No

AUTOSARC++14:A13-1-3 User defined literals operators shall only perform conversion of passed parameters. Required No

AUTOSARC++14:A13-2-1 An assignment operator shall return a reference to "this". Required No

AUTOSARC++14:A13-2-2 A binary arithmetic operator and a bitwise operator shall return a "prvalue". Required No

AUTOSARC++14:A13-2-3 A relational operator shall return a boolean value. Required Yes

AUTOSARC++14:A13-3-1
A function that contains "forwarding reference" as its argument shall not be
overloaded.

Required No

AUTOSARC++14:A13-5-1
If "operator[]" is to be overloaded with a non-const version, const version shall also be
implemented.

Required No

AUTOSARC++14:A13-5-2 All user-defined conversion operators shall be defined explicit. Required No

AUTOSARC++14:A13-5-3 User-defined conversion operators should not be used. Advisory No

AUTOSARC++14:A13-5-4 If two opposite operators are defined, one shall be defined in terms of the other. Required No

AUTOSARC++14:A13-5-5
Comparison operators shall be non-member functions with identical parameter types
and noexcept.

Required No

AUTOSARC++14:A13-6-1
Digit sequences separators ' shall only be used as follows: (1) for decimal, every 3

digits, (2) for hexadecimal, every 2 digits, (3) for binary, every 4 digits.
Required No

AUTOSARC++14:A14-1-1 A template should check if a specific template argument is suitable for this template. Advisory No

AUTOSARC++14:A14-5-1
A template constructor shall not participate in overload resolution for a single argument
of the enclosing class type.

Required No

AUTOSARC++14:A14-5-2
Class members that are not dependent on template class parameters should be defined
in a separate base class.

Advisory No

AUTOSARC++14:A14-5-3
A non-member generic operator shall only be declared in a namespace that does not
contain class (struct) type, enum type or union type declarations.

Advisory No

AUTOSARC++14:M14-5-3
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter.

Required No

AUTOSARC++14:M14-6-1
In a class template with a dependent base, any name that may be found in that
dependent base shall be referred to using a qualified-id or this->.

Required No

AUTOSARC++14:A14-7-1
A type used as a template argument shall provide all members that are used by the
template.

Required No

AUTOSARC++14:A14-7-2
Template specialization shall be declared in the same file (1) as the primary template
(2) as a user-defined type, for which the specialization is declared.

Required No

AUTOSARC++14:A14-8-2 Explicit specializations of function templates shall not be used. Required No

AUTOSARC++14:A15-0-1 A function shall not exit with an exception if it is able to complete its task. Required No

AUTOSARC++14:A15-0-2
At least the basic guarantee for exception safety shall be provided for all operations. In
addition, each function may offer either the strong guarantee or the nothrow guarantee.

Required No

AUTOSARC++14:A15-0-3 Exception safety guarantee of a called function shall be considered. Required No

AUTOSARC++14:M15-0-3
Control shall not be transferred into a try or catch block using a goto or a switch
statement.

Required No

AUTOSARC++14:A15-0-4
Unchecked exceptions shall be used to represent errors from which the caller cannot
reasonably be expected to recover.

Required No

AUTOSARC++14:A15-0-5
Checked exceptions shall be used to represent errors from which the caller can
reasonably be expected to recover.

Required No

AUTOSARC++14:A15-0-6

An analysis shall be performed to analyze the failure modes of exception handling. In

particular, the following failure modes shall be analyzed: (a) worst time execution time
not existing or cannot be determined, (b) stack not correctly unwound, (c) exception not

Required No

12 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

thrown, other exception thrown, wrong catch activated, (d) memory not available while
exception handling.

AUTOSARC++14:A15-0-7
Exception handling mechanism shall guarantee a deterministic worst-case time
execution time.

Required No

AUTOSARC++14:A15-0-8
A worst-case execution time (WCET) analysis shall be performed to determine
maximum execution time constraints of the software, covering in particular the
exceptions processing.

Required No

AUTOSARC++14:A15-1-1 Only instances of types derived from std::exception should be thrown. Advisory No

AUTOSARC++14:M15-1-1
The assignment-expression of a throw statement shall not itself cause an exception to
be thrown.

Required No

AUTOSARC++14:A15-1-2 An exception object shall not be a pointer. Required No

AUTOSARC++14:M15-1-2 NULL shall not be thrown explicitly. Required No

AUTOSARC++14:A15-1-3 All thrown exceptions should be unique. Advisory No

AUTOSARC++14:M15-1-3
An empty throw (throw;) shall only be used in the compound statement of a catch
handler.

Required No

AUTOSARC++14:A15-1-4
If a function exits with an exception, then before a throw, the function shall place all
objects/resources that the function constructed in valid states or it shall delete them.

Required No

AUTOSARC++14:A15-1-5 Exceptions shall not be thrown across execution boundaries. Required No

AUTOSARC++14:A15-2-1 Constructors that are not noexcept shall not be invoked before program startup. Required No

AUTOSARC++14:A15-2-2
If a constructor is not noexcept and the constructor cannot finish object initialization,

then it shall deallocate the object's resources and it shall throw an exception.
Required No

AUTOSARC++14:M15-3-1 Exceptions shall be raised only after start-up and before termination. Required No

AUTOSARC++14:A15-3-2
If a function throws an exception, it shall be handled when meaningful actions can be
taken, otherwise it shall be propagated.

Required No

AUTOSARC++14:A15-3-3
Main function and a task main function shall catch at least: base class exceptions from
all third-party libraries used, std::exception and all otherwise unhandled exceptions.

Required No

AUTOSARC++14:M15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor
shall not reference non-static members from this class or its bases.

Required No

AUTOSARC++14:A15-3-4

Catch-all (ellipsis and std::exception) handlers shall be used only in (a) main, (b) task
main functions, (c) in functions that are supposed to isolate independent components
and (d) "when calling third-party code that uses exceptions not according to
AUTOSAR C++14 guidelines.

Required No

AUTOSARC++14:M15-3-4
Each exception explicitly thrown in the code shall have a handler of a compatible type
in all call paths that could lead to that point.

Required No

AUTOSARC++14:A15-3-5 A class type exception shall be caught by reference or const reference. Required Yes

AUTOSARC++14:M15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-
block for a derived class and some or all of its bases, the handlers shall be ordered
most-derived to base class.

Required Yes

AUTOSARC++14:M15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

Required Yes

AUTOSARC++14:A15-4-1 Dynamic exception-specification shall not be used. Required No

AUTOSARC++14:A15-4-2
If a function is declared to be noexcept, noexcept(true) or noexcept(), then it shall not

exit with an exception.
Required No

AUTOSARC++14:A15-4-3
The noexcept specification of a function shall either be identical across all translation
units, or identical or more restrictive between a virtual member function and an

overrider.

Required No

AUTOSARC++14:A15-4-4 A declaration of non-throwing function shall contain noexcept specification. Required No

AUTOSARC++14:A15-4-5
Checked exceptions that could be thrown from a function shall be specified together
with the function declaration and they shall be identical in all function declarations and
for all its overriders.

Required No

AUTOSARC++14:A15-5-1
All user-provided class destructors, deallocation functions, move constructors, move
assignment operators and swap functions shall not exit with an exception. A noexcept
exception specification shall be added to these functions as appropriate.

Required No

13 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A15-5-2
Program shall not be abruptly terminated. In particular, an implicit or explicit
invocation of std::abort(), std::quick_exit(), std::_Exit(), std::terminate() shall not be
done.

Required Yes

AUTOSARC++14:A15-5-3 The std::terminate() function shall not be called implicitly. Required No

AUTOSARC++14:A16-0-1
The pre-processor shall only be used for unconditional and conditional file inclusion
and include guards, and using the following directives: (1) #ifndef, (2) #ifdef, (3) #if,
(4) #if defined, (5) #elif, (6) #else, (7) #define, (8) #endif, (9) #include.

Required Yes

AUTOSARC++14:M16-0-1
#include directives in a file shall only be preceded by other pre-processor directives or
comments.

Required Yes

AUTOSARC++14:M16-0-2 Macros shall only be #define'd or #undef'd in the global namespace. Required No

AUTOSARC++14:M16-0-5
Arguments to a function-like macro shall not contain tokens that look like pre-
processing directives.

Required Yes

AUTOSARC++14:M16-0-6
In the definition of a function-like macro, each instance of a parameter shall be
enclosed in parentheses, unless it is used as the operand of # or ##.

Required Yes

AUTOSARC++14:M16-0-7
Undefined macro identifiers shall not be used in #if or #elif pre-processor directives,

except as operands to the defined operator.
Required Yes

AUTOSARC++14:M16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed
by a pre-processing token.

Required Yes

AUTOSARC++14:M16-1-1 The defined pre-processor operator shall only be used in one of the two standard forms. Required No

AUTOSARC++14:M16-1-2
All #else, #elif and #endif pre-processor directives shall reside in the same file as the
#if or #ifdef directive to which they are related.

Required Yes

AUTOSARC++14:A16-2-1 The ', ", /*, //, \ characters shall not occur in a header file name or in #include directive. Required Yes

AUTOSARC++14:A16-2-2 There shall be no unused include directives. Required No

AUTOSARC++14:A16-2-3 An include directive shall be added explicitly for every symbol used in a file. Required No

AUTOSARC++14:M16-2-3 Include guards shall be provided. Required No

AUTOSARC++14:M16-3-1
There shall be at most one occurrence of the # or ## operators in a single macro
definition.

Required Yes

AUTOSARC++14:M16-3-2 The # and ## operators should not be used. Advisory Yes

AUTOSARC++14:A16-6-1 #error directive shall not be used. Required No

AUTOSARC++14:A16-7-1 The #pragma directive shall not be used. Required No

AUTOSARC++14:A17-0-1
Reserved identifiers, macros and functions in the C++ standard library shall not be

defined, redefined or undefined.
Required Yes

AUTOSARC++14:A17-0-2
All project's code including used libraries (including standard and user-defined
libraries) and any third-party user code shall conform to the AUTOSAR C++14 Coding

Guidelines.

Required No

AUTOSARC++14:M17-0-2 The names of standard library macros and objects shall not be reused. Required Yes

AUTOSARC++14:M17-0-3 The names of standard library functions shall not be overridden. Required Yes

AUTOSARC++14:M17-0-5 The setjmp macro and the longjmp function shall not be used. Required Yes

AUTOSARC++14:A17-1-1 Use of the C Standard Library shall be encapsulated and isolated. Required No

AUTOSARC++14:A17-6-1 Non-standard entities shall not be added to standard namespaces. Required Yes

AUTOSARC++14:A18-0-1 The C library facilities shall only be accessed through C++ library headers. Required Yes

AUTOSARC++14:A18-0-2 The error state of a conversion from string to a numeric value shall be checked. Required Yes

AUTOSARC++14:A18-0-3 The library (locale.h) and the setlocale function shall not be used. Required No

AUTOSARC++14:M18-0-3 The library functions abort, exit, getenv and system from library shall not be used. Required Yes

AUTOSARC++14:M18-0-4 The time handling functions of library shall not be used. Required Yes

AUTOSARC++14:M18-0-5 The unbounded functions of library shall not be used. Required Yes

AUTOSARC++14:A18-1-1 C-style arrays shall not be used. Required No

AUTOSARC++14:A18-1-2 The std::vector specialization shall not be used. Required No

AUTOSARC++14:A18-1-3 The std::auto_ptr type shall not be used. Required No

AUTOSARC++14:A18-1-4
A pointer pointing to an element of an array of objects shall not be passed to a smart
pointer of single object type.

Required No

14 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A18-1-6
All std::hash specializations for user-defined types shall have a noexcept function call
operator.

Required No

AUTOSARC++14:M18-2-1 The macro offsetof shall not be used. Required Yes

AUTOSARC++14:A18-5-1 Functions malloc, calloc, realloc and free shall not be used. Required Yes

AUTOSARC++14:A18-5-2 Non-placement new or delete expressions shall not be used. Required No

AUTOSARC++14:A18-5-3
The form of the delete expression shall match the form of the new expression used to
allocate the memory.

Required Yes

AUTOSARC++14:A18-5-4
If a project has sized or unsized version of operator "delete" globally defined, then both
sized and unsized versions shall be defined.

Required No

AUTOSARC++14:A18-5-5

Memory management functions shall ensure the following: (a) deterministic behavior
resulting with the existence of worst-case execution time, (b) avoiding memory
fragmentation, (c) avoid running out of memory, (d) avoiding mismatched allocations

or deallocations, (e) no dependence on non-deterministic calls to kernel.

Required Yes

AUTOSARC++14:A18-5-6

An analysis shall be performed to analyze the failure modes of dynamic memory
management. In particular, the following failure modes shall be analyzed: (a) non-

deterministic behavior resulting with nonexistence of worst-case execution time, (b)
memory fragmentation, (c) running out of memory, (d) mismatched allocations and
deallocations, (e) dependence on non-deterministic calls to kernel.

Required No

AUTOSARC++14:A18-5-7
If non-realtime implementation of dynamic memory management functions is used in
the project, then memory shall only be allocated and deallocated during non-realtime
program phases.

Required Yes

AUTOSARC++14:A18-5-8 Objects that do not outlive a function shall have automatic storage duration. Required No

AUTOSARC++14:A18-5-9

Custom implementations of dynamic memory allocation and deallocation functions

shall meet the semantic requirements specified in the corresponding "Required
behaviour" clause from the C++ Standard.

Required No

AUTOSARC++14:A18-5-

10

Placement new shall be used only with properly aligned pointers to sufficient storage

capacity.
Required No

AUTOSARC++14:A18-5-
11

"operator new" and "operator delete" shall be defined together. Required No

AUTOSARC++14:M18-7-1 The signal handling facilities of shall not be used. Required Yes

AUTOSARC++14:A18-9-1 The std::bind shall not be used. Required No

AUTOSARC++14:A18-9-2
Forwarding values to other functions shall be done via: (1) std::move if the value is an
rvalue reference, (2) std::forward if the value is forwarding reference.

Required No

AUTOSARC++14:A18-9-3 The std::move shall not be used on objects declared const or const&. Required No

AUTOSARC++14:A18-9-4 An argument to std::forward shall not be subsequently used. Required No

AUTOSARC++14:M19-3-1 The error indicator errno shall not be used. Required No

AUTOSARC++14:A20-8-1 An already-owned pointer value shall not be stored in an unrelated smart pointer. Required No

AUTOSARC++14:A20-8-2 A std::unique_ptr shall be used to represent exclusive ownership. Required No

AUTOSARC++14:A20-8-3 A std::shared_ptr shall be used to represent shared ownership. Required No

AUTOSARC++14:A20-8-4
A std::unique_ptr shall be used over std::shared_ptr if ownership sharing is not

required.
Required No

AUTOSARC++14:A20-8-5 std::make_unique shall be used to construct objects owned by std::unique_ptr. Required No

AUTOSARC++14:A20-8-6 std::make_shared shall be used to construct objects owned by std::shared_ptr. Required No

AUTOSARC++14:A20-8-7 A std::weak_ptr shall be used to represent temporary shared ownership. Required No

AUTOSARC++14:A21-8-1 Arguments to character-handling functions shall be representable as an unsigned char. Required Yes

AUTOSARC++14:A23-0-1 An iterator shall not be implicitly converted to const_iterator. Required No

AUTOSARC++14:A23-0-2
Elements of a container shall only be accessed via valid references, iterators, and
pointers.

Required No

AUTOSARC++14:A25-1-1
Non-static data members or captured values of predicate function objects that are state
related to this object's identity shall not be copied.

Required No

AUTOSARC++14:A25-4-1
Ordering predicates used with associative containers and STL sorting and related
algorithms shall adhere to a strict weak ordering relation.

Required No

AUTOSARC++14:A26-5-1 Pseudorandom numbers shall not be generated using std::rand(). Required No

15 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A26-5-2 Random number engines shall not be default-initialized. Required No

AUTOSARC++14:A27-0-1 Inputs from independent components shall be validated. Required Yes

AUTOSARC++14:M27-0-1 The stream input/output library shall not be used. Required Yes

AUTOSARC++14:A27-0-2 A C-style string shall guarantee sufficient space for data and the null terminator. Advisory Yes

AUTOSARC++14:A27-0-3
Alternate input and output operations on a file stream shall not be used without an
intervening flush or positioning call.

Required Yes

AUTOSARC++14:A27-0-4 C-style strings shall not be used. Required No

16 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSAR BROAD MAPPING (CODESONAR V7.3)

The following table contains CodeSonar warning classes that are broadly mapped to

AUTOSAR categories.

Rule Rule Name
Obligation

Level
Supported

AUTOSARC++14:A0-1-1
A project shall not contain instances of non-volatile variables being given values that
are not subsequently used.

Required Yes

AUTOSARC++14:M0-1-1 A project shall not contain unreachable code. Required Yes

AUTOSARC++14:A0-1-2
The value returned by a function having a non-void return type that is not an

overloaded operator shall be used.
Required Yes

AUTOSARC++14:M0-1-2 A project shall not contain infeasible paths. Required Yes

AUTOSARC++14:A0-1-3
Every function defined in an anonymous namespace, or static function with internal
linkage, or private member function shall be used.

Required No

AUTOSARC++14:M0-1-3 A project shall not contain unused variables. Required Yes

AUTOSARC++14:A0-1-4 There shall be no unused named parameters in non-virtual functions. Required Yes

AUTOSARC++14:M0-1-4 A project shall not contain non-volatile POD variables having only one use. Required Yes

AUTOSARC++14:A0-1-5
There shall be no unused named parameters in the set of parameters for a virtual

function and all the functions that override it.
Required Yes

AUTOSARC++14:A0-1-6 There should be no unused type declarations. Advisory Yes

AUTOSARC++14:M0-1-8 All functions with void return type shall have external side effect(s). Required Yes

AUTOSARC++14:M0-1-9 There shall be no dead code. Required Yes

AUTOSARC++14:M0-1-10 Every defined function should be called at least once. Advisory Yes

AUTOSARC++14:M0-2-1 An object shall not be assigned to an overlapping object. Required Yes

AUTOSARC++14:M0-3-1
Minimization of run-time failures shall be ensured by the use of at least one of: (a)
static analysis tools/techniques; (b) dynamic analysis tools/techniques; (c) explicit

coding of checks to handle run-time faults.

Required No

AUTOSARC++14:M0-3-2 If a function generates error information, then that error information shall be tested. Required Yes

AUTOSARC++14:A0-4-1 Floating-point implementation shall comply with IEEE 754 standard. Required No

AUTOSARC++14:M0-4-1 Use of scaled-integer or fixed-point arithmetic shall be documented. Required No

AUTOSARC++14:A0-4-2 Type long double shall not be used. Required No

AUTOSARC++14:M0-4-2 Use of floating-point arithmetic shall be documented. Required No

AUTOSARC++14:A0-4-3
The implementations in the chosen compiler shall strictly comply with the C++14
Language Standard.

Required No

AUTOSARC++14:A0-4-4 Range, domain and pole errors shall be checked when using math functions. Required Yes

AUTOSARC++14:M1-0-2 Multiple compilers shall only be used if they have a common, defined interface. Required No

AUTOSARC++14:A1-1-1
All code shall conform to ISO/IEC 14882:2014 - Programming Language C++ and
shall not use deprecated features.

Required Yes

AUTOSARC++14:A1-1-2
A warning level of the compilation process shall be set in compliance with project
policies.

Required Yes

AUTOSARC++14:A1-1-3
An optimization option that disregards strict standard compliance shall not be turned on
in the chosen compiler.

Required No

AUTOSARC++14:A1-2-1

When using a compiler toolchain (including preprocessor, compiler itself, linker, C++

standard libraries) in safety-related software, the tool confidence level (TCL) shall be
determined. In case of TCL2 or TCL3, the compiler shall undergo a "Qualification of a
software tool", as per ISO 26262-8.11.4.6.

Required No

AUTOSARC++14:A1-4-1
Code metrics and their valid boundaries shall be defined and code shall comply with
defined boundaries of code metrics.

Required Yes

AUTOSARC++14:A1-4-3 All code should compile free of compiler warnings. Advisory No

AUTOSARC++14:A2-3-1
Only those characters specified in the C++ Language Standard basic source character
set shall be used in the source code.

Required No

17 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A2-5-1 Trigraphs shall not be used. Required Yes

AUTOSARC++14:A2-5-2 Digraphs shall not be used. Required No

AUTOSARC++14:A2-7-1 The character \ shall not occur as a last character of a C++ comment. Required Yes

AUTOSARC++14:M2-7-1 The character sequence /* shall not be used within a C-style comment. Required Yes

AUTOSARC++14:A2-7-2 Sections of code shall not be "commented out". Required Yes

AUTOSARC++14:A2-7-3
All declarations of "user-defined" types, static and non-static data members, functions
and methods shall be preceded by documentation.

Required No

AUTOSARC++14:A2-7-5
Comments shall not document any actions or sources (e.g. tables, figures, paragraphs,
etc.) that are outside of the file.

Required No

AUTOSARC++14:A2-8-1 A header file name should reflect the logical entity for which it provides declarations. Required No

AUTOSARC++14:A2-8-2
An implementation file name should reflect the logical entity for which it provides
definitions.

Advisory No

AUTOSARC++14:A2-10-1
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Required Yes

AUTOSARC++14:M2-10-1 Different identifiers shall be typographically unambiguous. Required Yes

AUTOSARC++14:A2-10-4
The identifier name of a non-member object with static storage duration or static
function shall not be reused within a namespace.

Required Yes

AUTOSARC++14:A2-10-5
An identifier name of a function with static storage duration or a non-member object
with external or internal linkage should not be reused.

Advisory Yes

AUTOSARC++14:A2-10-6
A class or enumeration name shall not be hidden by a variable, function or enumerator
declaration in the same scope.

Required No

AUTOSARC++14:A2-11-1 Volatile keyword shall not be used. Required No

AUTOSARC++14:A2-13-1 Only those escape sequences that are defined in ISO/IEC 14882:2014 shall be used. Required No

AUTOSARC++14:A2-13-2 String literals with different encoding prefixes shall not be concatenated. Required No

AUTOSARC++14:M2-13-2
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used.

Required Yes

AUTOSARC++14:A2-13-3 Type wchar_t shall not be used. Required No

AUTOSARC++14:M2-13-3
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned
type.

Required Yes

AUTOSARC++14:A2-13-4 String literals shall not be assigned to non-constant pointers. Required Yes

AUTOSARC++14:M2-13-4 Literal suffixes shall be upper case. Required Yes

AUTOSARC++14:A2-13-5 Hexadecimal constants should be upper case. Advisory No

AUTOSARC++14:A2-13-6 Universal character names shall be used only inside character or string literals. Required No

AUTOSARC++14:A3-1-1
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule.

Required Yes

AUTOSARC++14:A3-1-2
Header files, that are defined locally in the project, shall have a file name extension of
one of: ".h", ".hpp" or ".hxx".

Required No

AUTOSARC++14:M3-1-2 Functions shall not be declared at block scope. Required Yes

AUTOSARC++14:A3-1-3
Implementation files, that are defined locally in the project, should have a file name
extension of ".cpp".

Advisory No

AUTOSARC++14:A3-1-4 When an array with external linkage is declared, its size shall be stated explicitly. Required Yes

AUTOSARC++14:A3-1-5

A function definition shall only be placed in a class definition if (1) the function is

intended to be inlined (2) it is a member function template (3) it is a member function
of a class template.

Required No

AUTOSARC++14:A3-1-6 Trivial accessor and mutator functions should be inlined. Advisory No

AUTOSARC++14:M3-2-1 All declarations of an object or function shall have compatible types. Required Yes

AUTOSARC++14:M3-2-2 The One Definition Rule shall not be violated. Required Yes

AUTOSARC++14:M3-2-3
A type, object or function that is used in multiple translation units shall be declared in
one and only one file.

Required Yes

AUTOSARC++14:M3-2-4 An identifier with external linkage shall have exactly one definition. Required Yes

18 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A3-3-1
Objects or functions with external linkage (including members of named namespaces)
shall be declared in a header file.

Required No

AUTOSARC++14:A3-3-2 Static and thread-local objects shall be constant-initialized. Required Yes

AUTOSARC++14:M3-3-2
If a function has internal linkage then all re-declarations shall include the static storage
class specifier.

Required No

AUTOSARC++14:M3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes
its visibility.

Required Yes

AUTOSARC++14:A3-8-1 An object shall not be accessed outside of its lifetime. Required Yes

AUTOSARC++14:A3-9-1
Fixed width integer types from , indicating the size and signedness, shall be used in

place of the basic numerical types.
Required Yes

AUTOSARC++14:M3-9-1
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations.

Required Yes

AUTOSARC++14:M3-9-3 The underlying bit representations of floating-point values shall not be used. Required Yes

AUTOSARC++14:A4-5-1

Expressions with type enum or enum class shall not be used as operands to built-in and
overloaded operators other than the subscript operator [], the assignment operator =,
the equality operators == and ! =, the unary & operator, and the relational operators <,
<=, >, >=.

Required Yes

AUTOSARC++14:M4-5-1
Expressions with type bool shall not be used as operands to built-in operators other
than the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and ! =, the unary & operator, and the conditional operator.

Required Yes

AUTOSARC++14:M4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and ! =, and
the unary & operator.

Required Yes

AUTOSARC++14:A4-7-1 An integer expression shall not lead to data loss. Required Yes

AUTOSARC++14:A4-10-1 Only nullptr literal shall be used as the null-pointer-constant. Required No

AUTOSARC++14:M4-10-1 NULL shall not be used as an integer value. Required Yes

AUTOSARC++14:M4-10-2 Literal zero (0) shall not be used as the null-pointer-constant. Required Yes

AUTOSARC++14:A5-0-1
The value of an expression shall be the same under any order of evaluation that the
standard permits.

Required Yes

AUTOSARC++14:A5-0-2
The condition of an if-statement and the condition of an iteration statement shall have
type bool.

Required Yes

AUTOSARC++14:M5-0-2 Limited dependence should be placed on C++ operator precedence rules in expressions. Advisory Yes

AUTOSARC++14:A5-0-3 The declaration of objects shall contain no more than two levels of pointer indirection. Required Yes

AUTOSARC++14:M5-0-3 A cvalue expression shall not be implicitly converted to a different underlying type. Required Yes

AUTOSARC++14:A5-0-4 Pointer arithmetic shall not be used with pointers to non-final classes. Required Yes

AUTOSARC++14:M5-0-4 An implicit integral conversion shall not change the signedness of the underlying type. Required Yes

AUTOSARC++14:M5-0-5 There shall be no implicit floating-integral conversions. Required Yes

AUTOSARC++14:M5-0-6
An implicit integral or floating-point conversion shall not reduce the size of the
underlying type.

Required Yes

AUTOSARC++14:M5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression. Required Yes

AUTOSARC++14:M5-0-8
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression.

Required Yes

AUTOSARC++14:M5-0-9
An explicit integral conversion shall not change the signedness of the underlying type
of a cvalue expression.

Required Yes

AUTOSARC++14:M5-0-10

If the bitwise operators ~ and << are applied to an operand with an underlying type of

unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

Required Yes

AUTOSARC++14:M5-0-11 The plain char type shall only be used for the storage and use of character values. Required Yes

AUTOSARC++14:M5-0-12
Signed char and unsigned char type shall only be used for the storage and use of
numeric values.

Required Yes

AUTOSARC++14:M5-0-14 The first operand of a conditional-operator shall have type bool. Required Yes

AUTOSARC++14:M5-0-15 Array indexing shall be the only form of pointer arithmetic. Required Yes

19 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:M5-0-16
A pointer operand and any pointer resulting from pointer arithmetic using that operand
shall both address elements of the same array.

Required Yes

AUTOSARC++14:M5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Required Yes

AUTOSARC++14:M5-0-18
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array.

Required Yes

AUTOSARC++14:M5-0-20
Non-constant operands to a binary bitwise operator shall have the same underlying
type.

Required Yes

AUTOSARC++14:M5-0-21 Bitwise operators shall only be applied to operands of unsigned underlying type. Required Yes

AUTOSARC++14:A5-1-1
Literal values shall not be used apart from type initialization, otherwise symbolic
names shall be used instead.

Required No

AUTOSARC++14:A5-1-2 Variables shall not be implicitly captured in a lambda expression. Required Yes

AUTOSARC++14:A5-1-3 Parameter list (possibly empty) shall be included in every lambda expression. Required Yes

AUTOSARC++14:A5-1-4 A lambda expression object shall not outlive any of its reference-captured objects. Required No

AUTOSARC++14:A5-1-6 Return type of a non-void return type lambda expression should be explicitly specified. Advisory Yes

AUTOSARC++14:A5-1-7 A lambda shall not be an operand to decltype or typeid. Required No

AUTOSARC++14:A5-1-8 Lambda expressions should not be defined inside another lambda expression. Advisory No

AUTOSARC++14:A5-1-9
Identical unnamed lambda expressions shall be replaced with a named function or a
named lambda expression.

Advisory No

AUTOSARC++14:A5-2-1 dynamic_cast should not be used. Advisory No

AUTOSARC++14:A5-2-2 Traditional C-style casts shall not be used. Required Yes

AUTOSARC++14:M5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by
means of dynamic_cast.

Required Yes

AUTOSARC++14:A5-2-3
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference.

Required Yes

AUTOSARC++14:M5-2-3
Casts from a base class to a derived class should not be performed on polymorphic

types.
Advisory No

AUTOSARC++14:A5-2-4 reinterpret_cast shall not be used. Required Yes

AUTOSARC++14:A5-2-5 An array or container shall not be accessed beyond its range. Required Yes

AUTOSARC++14:A5-2-6
The operands of a logical && or || shall be parenthesized if the operands contain binary
operators.

Required No

AUTOSARC++14:M5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Required Yes

AUTOSARC++14:M5-2-8
An object with integer type or pointer to void type shall not be converted to an object
with pointer type.

Required Yes

AUTOSARC++14:M5-2-9 A cast shall not convert a pointer type to an integral type. Required Yes

AUTOSARC++14:M5-2-10
The increment (++) and decrement (--) operators shall not be mixed with other

operators in an expression.
Required Yes

AUTOSARC++14:M5-2-11 The comma operator, && operator and the || operator shall not be overloaded. Required Yes

AUTOSARC++14:M5-2-12 An identifier with array type passed as a function argument shall not decay to a pointer. Required Yes

AUTOSARC++14:A5-3-1 Evaluation of the operand to the typeid operator shall not contain side effects. Required No

AUTOSARC++14:M5-3-1
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool.

Required Yes

AUTOSARC++14:A5-3-2 Null pointers shall not be dereferenced. Required Yes

AUTOSARC++14:M5-3-2
The unary minus operator shall not be applied to an expression whose underlying type

is unsigned.
Required Yes

AUTOSARC++14:A5-3-3 Pointers to incomplete class types shall not be deleted. Required No

AUTOSARC++14:M5-3-3 The unary & operator shall not be overloaded. Required Yes

AUTOSARC++14:M5-3-4 Evaluation of the operand to the sizeof operator shall not contain side effects. Required Yes

AUTOSARC++14:A5-5-1 A pointer to member shall not access non-existent class members. Required No

20 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A5-6-1
The right hand operand of the integer division or remainder operators shall not be equal
to zero.

Required Yes

AUTOSARC++14:M5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand.

Required Yes

AUTOSARC++14:A5-10-1
A pointer to member virtual function shall only be tested for equality with null-pointer-
constant.

Required No

AUTOSARC++14:M5-14-1 The right hand operand of a logical &&, || operators shall not contain side effects. Required Yes

AUTOSARC++14:A5-16-1 The ternary conditional operator shall not be used as a sub-expression. Required No

AUTOSARC++14:M5-17-1
The semantic equivalence between a binary operator and its assignment operator form

shall be preserved.
Required No

AUTOSARC++14:M5-18-1 The comma operator shall not be used. Required Yes

AUTOSARC++14:M5-19-1 Evaluation of constant unsigned integer expressions shall not lead to wrap-around. Required No

AUTOSARC++14:A6-2-1
Move and copy assignment operators shall either move or respectively copy base
classes and data members of a class, without any side effects.

Required No

AUTOSARC++14:M6-2-1 Assignment operators shall not be used in sub-expressions. Required Yes

AUTOSARC++14:A6-2-2
Expression statements shall not be explicit calls to constructors of temporary objects
only.

Required No

AUTOSARC++14:M6-2-2
Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
Required Yes

AUTOSARC++14:M6-2-3

Before preprocessing, a null statement shall only occur on a line by itself; it may be

followed by a comment, provided that the first character following the null statement is
a white-space character.

Required No

AUTOSARC++14:M6-3-1
The statement forming the body of a switch, while, do ... while or for statement shall be

a compound statement.
Required Yes

AUTOSARC++14:A6-4-1 A switch statement shall have at least two case-clauses, distinct from the default label. Required Yes

AUTOSARC++14:M6-4-1
An if (condition) construct shall be followed by a compound statement. The else
keyword shall be followed by either a compound statement, or another if statement.

Required Yes

AUTOSARC++14:M6-4-2 All if ... else if constructs shall be terminated with an else clause. Required Yes

AUTOSARC++14:M6-4-3 A switch statement shall be a well-formed switch statement. Required Yes

AUTOSARC++14:M6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

Required Yes

AUTOSARC++14:M6-4-5
An unconditional throw or break statement shall terminate every non-empty switch-
clause.

Required Yes

AUTOSARC++14:M6-4-6 The final clause of a switch statement shall be the default-clause. Required Yes

AUTOSARC++14:M6-4-7 The condition of a switch statement shall not have bool type. Required Yes

AUTOSARC++14:A6-5-1
A for-loop that loops through all elements of the container and does not use its loop-
counter shall not be used.

Required No

AUTOSARC++14:A6-5-2 A for loop shall contain a single loop-counter which shall not have floating-point type. Required Yes

AUTOSARC++14:M6-5-2
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter
shall only be used as an operand to <=, <, > or >=.

Required No

AUTOSARC++14:A6-5-3 Do statements should not be used. Advisory No

AUTOSARC++14:M6-5-3 The loop-counter shall not be modified within condition or statement. Required Yes

AUTOSARC++14:A6-5-4
For-init-statement and expression should not perform actions other than loop-counter
initialization and modification.

Advisory Yes

AUTOSARC++14:M6-5-4
The loop-counter shall be modified by one of: --, ++, - = n, or + = n; where n remains
constant for the duration of the loop.

Required Yes

AUTOSARC++14:M6-5-5
A loop-control-variable other than the loop-counter shall not be modified within
condition or expression.

Required Yes

AUTOSARC++14:M6-5-6
A loop-control-variable other than the loop-counter which is modified in statement
shall have type bool.

Required No

AUTOSARC++14:A6-6-1 The goto statement shall not be used. Required Yes

AUTOSARC++14:M6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement.

Required Yes

21 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:M6-6-2 The goto statement shall jump to a label declared later in the same function body. Required Yes

AUTOSARC++14:M6-6-3 The continue statement shall only be used within a well-formed for loop. Required Yes

AUTOSARC++14:A7-1-1 Constexpr or const specifiers shall be used for immutable data declaration. Required Yes

AUTOSARC++14:A7-1-2 The constexpr specifier shall be used for values that can be determined at compile time. Required No

AUTOSARC++14:M7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified.

Required Yes

AUTOSARC++14:A7-1-3
CV-qualifiers shall be placed on the right hand side of the type that is a typedef or a
using name.

Required No

AUTOSARC++14:A7-1-4 The register keyword shall not be used. Required No

AUTOSARC++14:A7-1-5

The auto specifier shall not be used apart from following cases: (1) to declare that a
variable has the same type as return type of a function call, (2) to declare that a variable
has the same type as initializer of non-fundamental type, (3) to declare parameters of a
generic lambda expression, (4) to declare a function template using trailing return type
syntax.

Required No

AUTOSARC++14:A7-1-6 The typedef specifier shall not be used. Required No

AUTOSARC++14:A7-1-7 Each expression statement and identifier declaration shall be placed on a separate line. Required Yes

AUTOSARC++14:A7-1-8 A non-type specifier shall be placed before a type specifier in a declaration. Required No

AUTOSARC++14:A7-1-9 A class, structure, or enumeration shall not be declared in the definition of its type. Required No

AUTOSARC++14:A7-2-1
An expression with enum underlying type shall only have values corresponding to the
enumerators of the enumeration.

Required Yes

AUTOSARC++14:A7-2-2 Enumeration underlying base type shall be explicitly defined. Required No

AUTOSARC++14:A7-2-3 Enumerations shall be declared as scoped enum classes. Required No

AUTOSARC++14:A7-2-4
In an enumeration, either (1) none, (2) the first or (3) all enumerators shall be
initialized.

Required Yes

AUTOSARC++14:A7-2-5 Enumerations should be used to represent sets of related named constants. Advisory No

AUTOSARC++14:A7-3-1 All overloads of a function shall be visible from where it is called. Required Yes

AUTOSARC++14:M7-3-1
The global namespace shall only contain main, namespace declarations and extern "C"
declarations.

Required Yes

AUTOSARC++14:M7-3-2 The identifier main shall not be used for a function other than the global function main. Required No

AUTOSARC++14:M7-3-3 There shall be no unnamed namespaces in header files. Required Yes

AUTOSARC++14:M7-3-4 Using-directives shall not be used. Required Yes

AUTOSARC++14:M7-3-6
Using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

Required Yes

AUTOSARC++14:A7-4-1 The asm declaration shall not be used. Required Yes

AUTOSARC++14:M7-4-1 All usage of assembler shall be documented. Required No

AUTOSARC++14:M7-4-2 Assembler instructions shall only be introduced using the asm declaration. Required Yes

AUTOSARC++14:M7-4-3 Assembly language shall be encapsulated and isolated. Required Yes

AUTOSARC++14:A7-5-1
A function shall not return a reference or a pointer to a parameter that is passed by
reference to const.

Required No

AUTOSARC++14:M7-5-1
A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.
Required Yes

AUTOSARC++14:A7-5-2 Functions shall not call themselves, either directly or indirectly. Required Yes

AUTOSARC++14:M7-5-2
The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist.

Required Yes

AUTOSARC++14:A7-6-1 Functions declared with the [[noreturn]] attribute shall not return. Required Yes

AUTOSARC++14:M8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-
declarator or member-declarator respectively.

Required No

AUTOSARC++14:A8-2-1
When declaring function templates, the trailing return type syntax shall be used if the
return type depends on the type of parameters.

Required No

AUTOSARC++14:M8-3-1
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments.

Required Yes

22 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A8-4-1 Functions shall not be defined using the ellipsis notation. Required Yes

AUTOSARC++14:A8-4-2
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Required Yes

AUTOSARC++14:M8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be
identical to those in the declaration.

Required Yes

AUTOSARC++14:A8-4-3 Common ways of passing parameters should be used. Advisory No

AUTOSARC++14:A8-4-4 Multiple output values from a function should be returned as a struct or tuple. Advisory No

AUTOSARC++14:M8-4-4
A function identifier shall either be used to call the function or it shall be preceded by
&.

Required Yes

AUTOSARC++14:A8-4-5 "consume" parameters declared as X && shall always be moved from. Required No

AUTOSARC++14:A8-4-6 "forward" parameters declared as T && shall always be forwarded. Required No

AUTOSARC++14:A8-4-7 "in" parameters for "cheap to copy" types shall be passed by value. Required No

AUTOSARC++14:A8-4-8 Output parameters shall not be used. Required No

AUTOSARC++14:A8-4-9 "in-out" parameters declared as T & shall be modified. Required No

AUTOSARC++14:A8-4-10 A parameter shall be passed by reference if it can't be NULL. Required No

AUTOSARC++14:A8-4-11
A smart pointer shall only be used as a parameter type if it expresses lifetime
semantics.

Required No

AUTOSARC++14:A8-4-12
A std::unique_ptr shall be passed to a function as: (1) a copy to express the function
assumes ownership (2) an lvalue reference to express that the function replaces the
managed object.

Required No

AUTOSARC++14:A8-4-13

A std::shared_ptr shall be passed to a function as: (1) a copy to express the function
shares ownership (2) an lvalue reference to express that the function replaces the
managed object (3) a const lvalue reference to express that the function retains a
reference count.

Required No

AUTOSARC++14:A8-4-14 Interfaces shall be precisely and strongly typed. Required No

AUTOSARC++14:A8-5-0 All memory shall be initialized before it is read. Required Yes

AUTOSARC++14:A8-5-1

In an initialization list, the order of initialization shall be following: (1) virtual base
classes in depth and left to right order of the inheritance graph, (2) direct base classes in
left to right order of inheritance list, (3) non-static data members in the order they were
declared in the class definition.

Required Yes

AUTOSARC++14:A8-5-2 Braced-initialization {}, without equals sign, shall be used for variable initialization. Required No

AUTOSARC++14:M8-5-2
Braces shall be used to indicate and match the structure in the non-zero initialization of
arrays and structures.

Required Yes

AUTOSARC++14:A8-5-3 A variable of type auto shall not be initialized using {} or ={} braced-initialization. Required No

AUTOSARC++14:A8-5-4
If a class has a user-declared constructor that takes a parameter of type
std::initializer_list, then it shall be the only constructor apart from special member
function constructors.

Advisory No

AUTOSARC++14:A9-3-1
Member functions shall not return non-const "raw" pointers or references to private or
protected data owned by the class.

Required No

AUTOSARC++14:M9-3-1 Const member functions shall not return non-const pointers or references to class-data. Required No

AUTOSARC++14:M9-3-3
If a member function can be made static then it shall be made static, otherwise if it can
be made const then it shall be made const.

Required Yes

AUTOSARC++14:A9-5-1 Unions shall not be used. Required Yes

AUTOSARC++14:A9-6-1
Data types used for interfacing with hardware or conforming to communication
protocols shall be trivial, standard-layout and only contain members of types with
defined sizes.

Required No

AUTOSARC++14:M9-6-1
When the absolute positioning of bits representing a bit-field is required, then the
behavior and packing of bit-fields shall be documented.

Required No

AUTOSARC++14:A9-6-2
Bit-fields shall be used only when interfacing to hardware or conforming to
communication protocols.

Required No

AUTOSARC++14:M9-6-4 Named bit-fields with signed integer type shall have a length of more than one bit. Required Yes

AUTOSARC++14:A10-0-1 Public inheritance shall be used to implement "is-a" relationship. Required No

AUTOSARC++14:A10-0-2 Membership or non-public inheritance shall be used to implement "has-a" relationship. Required No

23 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A10-1-1 Class shall not be derived from more than one base class which is not an interface class. Required No

AUTOSARC++14:M10-1-1 Classes should not be derived from virtual bases. Advisory Yes

AUTOSARC++14:M10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy. Required Yes

AUTOSARC++14:M10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy. Required Yes

AUTOSARC++14:A10-2-1
Non-virtual public or protected member functions shall not be redefined in derived
classes.

Required No

AUTOSARC++14:M10-2-1 All accessible entity names within a multiple inheritance hierarchy should be unique. Advisory No

AUTOSARC++14:A10-3-1
Virtual function declaration shall contain exactly one of the three specifiers: (1) virtual,
(2) override, (3) final.

Required No

AUTOSARC++14:A10-3-2 Each overriding virtual function shall be declared with the override or final specifier. Required No

AUTOSARC++14:A10-3-3 Virtual functions shall not be introduced in a final class. Required No

AUTOSARC++14:M10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
Required No

AUTOSARC++14:A10-3-5 A user-defined assignment operator shall not be virtual. Required No

AUTOSARC++14:A10-4-1 Hierarchies should be based on interface classes. Advisory No

AUTOSARC++14:A11-0-1 A non-POD type should be defined as class. Advisory No

AUTOSARC++14:M11-0-1 Member data in non-POD class types shall be private. Required No

AUTOSARC++14:A11-0-2

A type defined as struct shall: (1) provide only public data members, (2) not provide

any special member functions or methods, (3) not be a base of another struct or class,
(4) not inherit from another struct or class.

Required No

AUTOSARC++14:A11-3-1 Friend declarations shall not be used. Required No

AUTOSARC++14:A12-0-1
If a class declares a copy or move operation, or a destructor, either via "=default",
"=delete", or via a user-provided declaration, then all others of these five special

member functions shall be declared as well.

Required No

AUTOSARC++14:A12-0-2
Bitwise operations and operations that assume data representation in memory shall not
be performed on objects.

Required No

AUTOSARC++14:A12-1-1
Constructors shall explicitly initialize all virtual base classes, all direct non-virtual base
classes and all non-static data members.

Required No

AUTOSARC++14:M12-1-1
An object's dynamic type shall not be used from the body of its constructor or
destructor.

Required Yes

AUTOSARC++14:A12-1-2
Both NSDMI and a non-static member initializer in a constructor shall not be used in
the same type.

Required No

AUTOSARC++14:A12-1-3
If all user-defined constructors of a class initialize data members with constant values
that are the same across all constructors, then data members shall be initialized using
NSDMI instead.

Required No

AUTOSARC++14:A12-1-4
All constructors that are callable with a single argument of fundamental type shall be
declared explicit.

Required No

AUTOSARC++14:A12-1-5
Common class initialization for non-constant members shall be done by a delegating
constructor.

Required No

AUTOSARC++14:A12-1-6
Derived classes that do not need further explicit initialization and require all the
constructors from the base class shall use inheriting constructors.

Required No

AUTOSARC++14:A12-4-1
Destructor of a base class shall be public virtual, public override or protected non-
virtual.

Required Yes

AUTOSARC++14:A12-4-2 If a public destructor of a class is non-virtual, then the class should be declared final. Advisory No

AUTOSARC++14:A12-6-1
All class data members that are initialized by the constructor shall be initialized using

member initializers.
Required No

AUTOSARC++14:A12-7-1
If the behavior of a user-defined special member function is identical to implicitly
defined special member function, then it shall be defined "=default" or be left

undefined.

Required No

AUTOSARC++14:A12-8-1
Move and copy constructors shall move and respectively copy base classes and data
members of a class, without any side effects.

Required Yes

AUTOSARC++14:A12-8-2
User-defined copy and move assignment operators should use user-defined no-throw
swap function.

Advisory No

24 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A12-8-3 Moved-from object shall not be read-accessed. Required No

AUTOSARC++14:A12-8-4
Move constructor shall not initialize its class members and base classes using copy
semantics.

Required No

AUTOSARC++14:A12-8-5 A copy assignment and a move assignment operators shall handle self-assignment. Required No

AUTOSARC++14:A12-8-6
Copy and move constructors and copy assignment and move assignment operators shall
be declared protected or defined "=delete" in base class.

Required Yes

AUTOSARC++14:A12-8-7 Assignment operators should be declared with the ref-qualifier &. Advisory No

AUTOSARC++14:A13-1-2
User defined suffixes of the user defined literal operators shall start with underscore
followed by one or more letters.

Required No

AUTOSARC++14:A13-1-3 User defined literals operators shall only perform conversion of passed parameters. Required No

AUTOSARC++14:A13-2-1 An assignment operator shall return a reference to "this". Required No

AUTOSARC++14:A13-2-2 A binary arithmetic operator and a bitwise operator shall return a "prvalue". Required No

AUTOSARC++14:A13-2-3 A relational operator shall return a boolean value. Required Yes

AUTOSARC++14:A13-3-1
A function that contains "forwarding reference" as its argument shall not be
overloaded.

Required No

AUTOSARC++14:A13-5-1
If "operator[]" is to be overloaded with a non-const version, const version shall also be
implemented.

Required No

AUTOSARC++14:A13-5-2 All user-defined conversion operators shall be defined explicit. Required No

AUTOSARC++14:A13-5-3 User-defined conversion operators should not be used. Advisory No

AUTOSARC++14:A13-5-4 If two opposite operators are defined, one shall be defined in terms of the other. Required No

AUTOSARC++14:A13-5-5
Comparison operators shall be non-member functions with identical parameter types
and noexcept.

Required No

AUTOSARC++14:A13-6-1
Digit sequences separators ' shall only be used as follows: (1) for decimal, every 3

digits, (2) for hexadecimal, every 2 digits, (3) for binary, every 4 digits.
Required No

AUTOSARC++14:A14-1-1 A template should check if a specific template argument is suitable for this template. Advisory No

AUTOSARC++14:A14-5-1
A template constructor shall not participate in overload resolution for a single argument
of the enclosing class type.

Required No

AUTOSARC++14:A14-5-2
Class members that are not dependent on template class parameters should be defined
in a separate base class.

Advisory No

AUTOSARC++14:A14-5-3
A non-member generic operator shall only be declared in a namespace that does not
contain class (struct) type, enum type or union type declarations.

Advisory No

AUTOSARC++14:M14-5-3
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter.

Required No

AUTOSARC++14:M14-6-1
In a class template with a dependent base, any name that may be found in that
dependent base shall be referred to using a qualified-id or this->.

Required No

AUTOSARC++14:A14-7-1
A type used as a template argument shall provide all members that are used by the
template.

Required No

AUTOSARC++14:A14-7-2
Template specialization shall be declared in the same file (1) as the primary template
(2) as a user-defined type, for which the specialization is declared.

Required No

AUTOSARC++14:A14-8-2 Explicit specializations of function templates shall not be used. Required No

AUTOSARC++14:A15-0-1 A function shall not exit with an exception if it is able to complete its task. Required No

AUTOSARC++14:A15-0-2
At least the basic guarantee for exception safety shall be provided for all operations. In
addition, each function may offer either the strong guarantee or the nothrow guarantee.

Required No

AUTOSARC++14:A15-0-3 Exception safety guarantee of a called function shall be considered. Required No

AUTOSARC++14:M15-0-3
Control shall not be transferred into a try or catch block using a goto or a switch
statement.

Required No

AUTOSARC++14:A15-0-4
Unchecked exceptions shall be used to represent errors from which the caller cannot
reasonably be expected to recover.

Required No

AUTOSARC++14:A15-0-5
Checked exceptions shall be used to represent errors from which the caller can
reasonably be expected to recover.

Required No

AUTOSARC++14:A15-0-6

An analysis shall be performed to analyze the failure modes of exception handling. In

particular, the following failure modes shall be analyzed: (a) worst time execution time
not existing or cannot be determined, (b) stack not correctly unwound, (c) exception not

Required No

25 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

thrown, other exception thrown, wrong catch activated, (d) memory not available while
exception handling.

AUTOSARC++14:A15-0-7
Exception handling mechanism shall guarantee a deterministic worst-case time
execution time.

Required No

AUTOSARC++14:A15-0-8
A worst-case execution time (WCET) analysis shall be performed to determine
maximum execution time constraints of the software, covering in particular the
exceptions processing.

Required No

AUTOSARC++14:A15-1-1 Only instances of types derived from std::exception should be thrown. Advisory No

AUTOSARC++14:M15-1-1
The assignment-expression of a throw statement shall not itself cause an exception to
be thrown.

Required No

AUTOSARC++14:A15-1-2 An exception object shall not be a pointer. Required No

AUTOSARC++14:M15-1-2 NULL shall not be thrown explicitly. Required No

AUTOSARC++14:A15-1-3 All thrown exceptions should be unique. Advisory No

AUTOSARC++14:M15-1-3
An empty throw (throw;) shall only be used in the compound statement of a catch
handler.

Required No

AUTOSARC++14:A15-1-4
If a function exits with an exception, then before a throw, the function shall place all
objects/resources that the function constructed in valid states or it shall delete them.

Required No

AUTOSARC++14:A15-1-5 Exceptions shall not be thrown across execution boundaries. Required No

AUTOSARC++14:A15-2-1 Constructors that are not noexcept shall not be invoked before program startup. Required Yes

AUTOSARC++14:A15-2-2
If a constructor is not noexcept and the constructor cannot finish object initialization,

then it shall deallocate the object's resources and it shall throw an exception.
Required No

AUTOSARC++14:M15-3-1 Exceptions shall be raised only after start-up and before termination. Required No

AUTOSARC++14:A15-3-2
If a function throws an exception, it shall be handled when meaningful actions can be
taken, otherwise it shall be propagated.

Required No

AUTOSARC++14:A15-3-3
Main function and a task main function shall catch at least: base class exceptions from
all third-party libraries used, std::exception and all otherwise unhandled exceptions.

Required No

AUTOSARC++14:M15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor
shall not reference non-static members from this class or its bases.

Required No

AUTOSARC++14:A15-3-4

Catch-all (ellipsis and std::exception) handlers shall be used only in (a) main, (b) task
main functions, (c) in functions that are supposed to isolate independent components
and (d) "when calling third-party code that uses exceptions not according to
AUTOSAR C++14 guidelines.

Required No

AUTOSARC++14:M15-3-4
Each exception explicitly thrown in the code shall have a handler of a compatible type
in all call paths that could lead to that point.

Required No

AUTOSARC++14:A15-3-5 A class type exception shall be caught by reference or const reference. Required Yes

AUTOSARC++14:M15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-
block for a derived class and some or all of its bases, the handlers shall be ordered
most-derived to base class.

Required Yes

AUTOSARC++14:M15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

Required Yes

AUTOSARC++14:A15-4-1 Dynamic exception-specification shall not be used. Required No

AUTOSARC++14:A15-4-2
If a function is declared to be noexcept, noexcept(true) or noexcept(), then it shall not

exit with an exception.
Required Yes

AUTOSARC++14:A15-4-3
The noexcept specification of a function shall either be identical across all translation
units, or identical or more restrictive between a virtual member function and an

overrider.

Required No

AUTOSARC++14:A15-4-4 A declaration of non-throwing function shall contain noexcept specification. Required No

AUTOSARC++14:A15-4-5
Checked exceptions that could be thrown from a function shall be specified together
with the function declaration and they shall be identical in all function declarations and
for all its overriders.

Required No

AUTOSARC++14:A15-5-1
All user-provided class destructors, deallocation functions, move constructors, move
assignment operators and swap functions shall not exit with an exception. A noexcept
exception specification shall be added to these functions as appropriate.

Required Yes

26 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A15-5-2
Program shall not be abruptly terminated. In particular, an implicit or explicit
invocation of std::abort(), std::quick_exit(), std::_Exit(), std::terminate() shall not be
done.

Required Yes

AUTOSARC++14:A15-5-3 The std::terminate() function shall not be called implicitly. Required No

AUTOSARC++14:A16-0-1
The pre-processor shall only be used for unconditional and conditional file inclusion
and include guards, and using the following directives: (1) #ifndef, (2) #ifdef, (3) #if,
(4) #if defined, (5) #elif, (6) #else, (7) #define, (8) #endif, (9) #include.

Required Yes

AUTOSARC++14:M16-0-1
#include directives in a file shall only be preceded by other pre-processor directives or
comments.

Required Yes

AUTOSARC++14:M16-0-2 Macros shall only be #define'd or #undef'd in the global namespace. Required No

AUTOSARC++14:M16-0-5
Arguments to a function-like macro shall not contain tokens that look like pre-
processing directives.

Required Yes

AUTOSARC++14:M16-0-6
In the definition of a function-like macro, each instance of a parameter shall be
enclosed in parentheses, unless it is used as the operand of # or ##.

Required Yes

AUTOSARC++14:M16-0-7
Undefined macro identifiers shall not be used in #if or #elif pre-processor directives,

except as operands to the defined operator.
Required Yes

AUTOSARC++14:M16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed
by a pre-processing token.

Required Yes

AUTOSARC++14:M16-1-1 The defined pre-processor operator shall only be used in one of the two standard forms. Required No

AUTOSARC++14:M16-1-2
All #else, #elif and #endif pre-processor directives shall reside in the same file as the
#if or #ifdef directive to which they are related.

Required Yes

AUTOSARC++14:A16-2-1 The ', ", /*, //, \ characters shall not occur in a header file name or in #include directive. Required Yes

AUTOSARC++14:A16-2-2 There shall be no unused include directives. Required No

AUTOSARC++14:A16-2-3 An include directive shall be added explicitly for every symbol used in a file. Required No

AUTOSARC++14:M16-2-3 Include guards shall be provided. Required No

AUTOSARC++14:M16-3-1
There shall be at most one occurrence of the # or ## operators in a single macro
definition.

Required Yes

AUTOSARC++14:M16-3-2 The # and ## operators should not be used. Advisory Yes

AUTOSARC++14:A16-6-1 #error directive shall not be used. Required No

AUTOSARC++14:A16-7-1 The #pragma directive shall not be used. Required No

AUTOSARC++14:A17-0-1
Reserved identifiers, macros and functions in the C++ standard library shall not be

defined, redefined or undefined.
Required Yes

AUTOSARC++14:A17-0-2
All project's code including used libraries (including standard and user-defined
libraries) and any third-party user code shall conform to the AUTOSAR C++14 Coding

Guidelines.

Required No

AUTOSARC++14:M17-0-2 The names of standard library macros and objects shall not be reused. Required Yes

AUTOSARC++14:M17-0-3 The names of standard library functions shall not be overridden. Required Yes

AUTOSARC++14:M17-0-5 The setjmp macro and the longjmp function shall not be used. Required Yes

AUTOSARC++14:A17-1-1 Use of the C Standard Library shall be encapsulated and isolated. Required No

AUTOSARC++14:A17-6-1 Non-standard entities shall not be added to standard namespaces. Required Yes

AUTOSARC++14:A18-0-1 The C library facilities shall only be accessed through C++ library headers. Required Yes

AUTOSARC++14:A18-0-2 The error state of a conversion from string to a numeric value shall be checked. Required Yes

AUTOSARC++14:A18-0-3 The library (locale.h) and the setlocale function shall not be used. Required No

AUTOSARC++14:M18-0-3 The library functions abort, exit, getenv and system from library shall not be used. Required Yes

AUTOSARC++14:M18-0-4 The time handling functions of library shall not be used. Required Yes

AUTOSARC++14:M18-0-5 The unbounded functions of library shall not be used. Required Yes

AUTOSARC++14:A18-1-1 C-style arrays shall not be used. Required No

AUTOSARC++14:A18-1-2 The std::vector specialization shall not be used. Required No

AUTOSARC++14:A18-1-3 The std::auto_ptr type shall not be used. Required No

AUTOSARC++14:A18-1-4
A pointer pointing to an element of an array of objects shall not be passed to a smart
pointer of single object type.

Required No

27 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A18-1-6
All std::hash specializations for user-defined types shall have a noexcept function call
operator.

Required No

AUTOSARC++14:M18-2-1 The macro offsetof shall not be used. Required Yes

AUTOSARC++14:A18-5-1 Functions malloc, calloc, realloc and free shall not be used. Required Yes

AUTOSARC++14:A18-5-2 Non-placement new or delete expressions shall not be used. Required No

AUTOSARC++14:A18-5-3
The form of the delete expression shall match the form of the new expression used to
allocate the memory.

Required Yes

AUTOSARC++14:A18-5-4
If a project has sized or unsized version of operator "delete" globally defined, then both
sized and unsized versions shall be defined.

Required No

AUTOSARC++14:A18-5-5

Memory management functions shall ensure the following: (a) deterministic behavior
resulting with the existence of worst-case execution time, (b) avoiding memory
fragmentation, (c) avoid running out of memory, (d) avoiding mismatched allocations

or deallocations, (e) no dependence on non-deterministic calls to kernel.

Required Yes

AUTOSARC++14:A18-5-6

An analysis shall be performed to analyze the failure modes of dynamic memory
management. In particular, the following failure modes shall be analyzed: (a) non-

deterministic behavior resulting with nonexistence of worst-case execution time, (b)
memory fragmentation, (c) running out of memory, (d) mismatched allocations and
deallocations, (e) dependence on non-deterministic calls to kernel.

Required No

AUTOSARC++14:A18-5-7
If non-realtime implementation of dynamic memory management functions is used in
the project, then memory shall only be allocated and deallocated during non-realtime
program phases.

Required Yes

AUTOSARC++14:A18-5-8 Objects that do not outlive a function shall have automatic storage duration. Required No

AUTOSARC++14:A18-5-9

Custom implementations of dynamic memory allocation and deallocation functions

shall meet the semantic requirements specified in the corresponding "Required
behaviour" clause from the C++ Standard.

Required No

AUTOSARC++14:A18-5-

10

Placement new shall be used only with properly aligned pointers to sufficient storage

capacity.
Required No

AUTOSARC++14:A18-5-
11

"operator new" and "operator delete" shall be defined together. Required No

AUTOSARC++14:M18-7-1 The signal handling facilities of shall not be used. Required Yes

AUTOSARC++14:A18-9-1 The std::bind shall not be used. Required No

AUTOSARC++14:A18-9-2
Forwarding values to other functions shall be done via: (1) std::move if the value is an
rvalue reference, (2) std::forward if the value is forwarding reference.

Required No

AUTOSARC++14:A18-9-3 The std::move shall not be used on objects declared const or const&. Required No

AUTOSARC++14:A18-9-4 An argument to std::forward shall not be subsequently used. Required No

AUTOSARC++14:M19-3-1 The error indicator errno shall not be used. Required No

AUTOSARC++14:A20-8-1 An already-owned pointer value shall not be stored in an unrelated smart pointer. Required No

AUTOSARC++14:A20-8-2 A std::unique_ptr shall be used to represent exclusive ownership. Required No

AUTOSARC++14:A20-8-3 A std::shared_ptr shall be used to represent shared ownership. Required No

AUTOSARC++14:A20-8-4
A std::unique_ptr shall be used over std::shared_ptr if ownership sharing is not

required.
Required No

AUTOSARC++14:A20-8-5 std::make_unique shall be used to construct objects owned by std::unique_ptr. Required No

AUTOSARC++14:A20-8-6 std::make_shared shall be used to construct objects owned by std::shared_ptr. Required No

AUTOSARC++14:A20-8-7 A std::weak_ptr shall be used to represent temporary shared ownership. Required No

AUTOSARC++14:A21-8-1 Arguments to character-handling functions shall be representable as an unsigned char. Required Yes

AUTOSARC++14:A23-0-1 An iterator shall not be implicitly converted to const_iterator. Required No

AUTOSARC++14:A23-0-2
Elements of a container shall only be accessed via valid references, iterators, and
pointers.

Required No

AUTOSARC++14:A25-1-1
Non-static data members or captured values of predicate function objects that are state
related to this object's identity shall not be copied.

Required No

AUTOSARC++14:A25-4-1
Ordering predicates used with associative containers and STL sorting and related
algorithms shall adhere to a strict weak ordering relation.

Required No

AUTOSARC++14:A26-5-1 Pseudorandom numbers shall not be generated using std::rand(). Required No

28 TECHNICAL WHITEPAPER

AUTOSAR CATEGORIES MAPPED TO CODESONAR® 7.3 WARNING CLASSES

AUTOSARC++14:A26-5-2 Random number engines shall not be default-initialized. Required No

AUTOSARC++14:A27-0-1 Inputs from independent components shall be validated. Required Yes

AUTOSARC++14:M27-0-1 The stream input/output library shall not be used. Required Yes

AUTOSARC++14:A27-0-2 A C-style string shall guarantee sufficient space for data and the null terminator. Advisory Yes

AUTOSARC++14:A27-0-3
Alternate input and output operations on a file stream shall not be used without an
intervening flush or positioning call.

Required Yes

AUTOSARC++14:A27-0-4 C-style strings shall not be used. Required No

GrammaTech is a leading global provider of application testing (AST) solutions used by the

world’s most security conscious organizations to detect, measure, analyze and resolve

vulnerabilities for software they develop or use. The company is also a trusted cybersecurity

and artificial intelligence research partner for the nation’s civil, defense, and intelligence

agencies.

CodeSonar and CodeSentry are registered trademarks of GrammaTech, Inc.

© GrammaTech, Inc. All rights reserved.

